图像优化技术:表格检测与低光照图像校正
在当今数字化时代,图像的处理和分析变得越来越重要。本文将介绍两种不同的图像优化技术,分别是基于深度学习的表格检测框架 DeepDoT,以及基于粒子群优化的低光照图像校正方法。
1. 基于深度学习的表格检测框架 DeepDoT
表格检测在文档处理中具有重要意义,能够帮助我们从文档图像中准确识别和定位表格。为了提高表格检测的性能,研究人员提出了 DeepDoT 框架。
1.1 数据集
为了验证 DeepDoT 的性能,使用了四个公开可用的数据集,具体信息如下表所示:
| 数据集 | 总图像数 | 使用图像数 | 训练 - 测试分割 |
| — | — | — | — |
| ICDAR - 13 | 238 | 238 | - |
| ICDAR - 17 | 2417 | 2417 | 1600 - 817 |
| MARMOT | 2000 | 2000 | - |
| UNLV | 2889 | 424 | - |
其中,除了 ICDAR - 17 数据集有预定义的训练 - 测试分割外,其他数据集采用交叉数据集测试技术。
1.2 训练方案
由于缺乏大量数据从头开始训练网络,因此使用了预训练(ImageNet)的骨干网络进行迁移学习。为了增强和验证 DeepDoT 的泛化能力,采用了两种评估方案:
- 留一法(Leave One Out, LOO) :除一个数据集外,其余数据集用于训练,剩下的一个数据集用于测试。在该方案中,ICDAR - 2017