低光照图像校正与图像去模糊技术详解
在图像处理领域,低光照图像校正和图像去模糊是两个重要且具有挑战性的任务。低光照图像往往因光线不足导致信息难以提取,而图像模糊则可能由相机抖动、聚焦不准等多种因素引起,影响图像的清晰度和质量。下面将详细介绍基于PSO的低光照图像校正方法以及基于深度强化学习的图像去模糊方法。
基于PSO的低光照图像校正方法
- 核心流程概述
- 该方法主要针对低光照的2D彩色图像,旨在提升图像的光照效果和质量。其核心流程包括将RGB图像转换为HSV颜色空间,对强度分量(V)进行两次图像分类和校正操作(FCIC和SCIC),最后使用基于PSO的伽马校正技术得到增强后的图像。
- 具体步骤如下:
- 转换颜色空间:将输入的RGB图像转换为HSV颜色空间,提取强度分量$I_v$。
- 应用拉普拉斯滤波器:对$I_v$应用二阶拉普拉斯滤波器,得到$\nabla^2I_v$。
- 线性拉伸:使用线性拉伸算法将$\nabla^2I_v$的像素强度调整到[0, 255]范围内,得到$\tilde{I}_v$。
- 一阶分类和图像校正(FCIC):根据$\tilde{I}_v$的平均值$AVG_1$将图像分为三类,分别进行不同的处理,得到$I_1$。
- 二阶分类和图像校正(SCIC):根据$I_1$的平均值$AVG_2$将图像再次分为三类,调整亮度,得到$I_2$。
- PSO-based伽马校正:使用PSO技术估计最佳伽马因