46、图像去模糊与番茄新鲜度分级:技术与数据集的创新探索

图像去模糊与番茄新鲜度分级:技术与数据集的创新探索

在当今的科技领域,图像去模糊和农产品新鲜度分级是两个备受关注的研究方向。前者在计算机视觉中对于恢复清晰图像至关重要,后者则在农业生产和销售环节有着重要的应用价值。本文将深入探讨基于深度强化学习的图像去模糊方法以及用于番茄新鲜度分级的大型数据集。

基于深度强化学习的图像去模糊(DeblurRL)

深度强化学习在图像去模糊领域展现出了巨大的潜力。这种方法以像素级别为操作粒度,通过应用特定的动作来去除图像中的模糊。

强化学习背景

在标准的强化学习设置中,智能体在离散的时间步长内与环境进行交互。在每个时间步 τ,智能体接收状态 sτ,然后根据其策略 π 从可能的动作集合 “A” 中选择一个动作 aτ。作为回报,智能体获得下一个状态 sτ+1 和标量奖励 rτ。这个过程会一直持续,直到智能体达到终止状态,之后过程重新开始。

总累积奖励回报 Rτ 的计算公式为:
[R_{\tau} = r_{\tau} + \gamma r_{\tau + 1} + \gamma^2 r_{\tau + 2} + \gamma^3 r_{\tau + 3} + \cdots + \gamma^{n - 1} r_{\tau + n - 1} + \gamma^n V(s_{\tau + n})]
其中,γ 是折扣因子,取值范围为 (0, 1]。智能体的主要目标是最大化从每个状态 sτ 获得的预期回报。

为了进一步扩展标准强化学习,引入了像素级智能体,每个像素的智能体策略表示为 πi(aτ
i |sτ
i ),其中 i 的范围是 [1, n]。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值