FGrade:用于番茄新鲜度分级的大数据集及背光图像感兴趣区域增强
番茄新鲜度分级相关研究
在利用计算机视觉进行蔬菜质量评估的领域,已有诸多学者展开研究。例如,Liu等人提出基于计算机视觉的番茄分级算法,通过颜色特征、图像大小和形状进行分级,利用HSV颜色模型直方图和一阶一阶差分(FD)形状描述方法提取特征,并使用三个分类器对图像进行分类。Opena等人提出了一个自动番茄分类系统,采用人工神经网络(ANN)分类器和人工蜂群(ABC)算法训练模型。Luna等人提出一个分类器,基于图像大小,使用阈值处理、机器学习和深度学习模型对水果进行分类。Semary等人提出了一种基于水果外表面对受感染水果进行分类的方法,在预处理和特征提取中使用灰度共生矩阵(GLCM)、颜色矩、小波能量和熵,并使用支持向量机(SVM)结合Min - Max和Z - Score归一化方法将番茄图像分为两类。Wan等人提出利用番茄表面等面积同心圆的颜色特征识别方法,并基于这些特征和反向传播神经网络(BPNN)创建成熟度分级模型。Kaur等人提出了一种检测水果质量的技术,并成功应用于大量基于ANN的柠檬质量评估。
然而,目前缺乏适合番茄分级的数据集。研究人员收集了12个品种的番茄,共6470张图像用于检测新鲜度。数据收集过程如下:
1. 从附近市场收集番茄样本,放置在室温环境。
2. 使用索尼DSC - W190相机,每天从8个不同角度为每个样本拍摄8张不同图像,直至番茄变质。最终数据集包含约6500张高分辨率(10 MP)图像。
为了使原始图像适合分类任务,进行了预处理。在处理对象之前,使用Grab cut算法对图像进行分割,去除背景。图像标注是将番茄按新鲜度分组,6470张番茄图像被分为10类,