背光图像感兴趣区域增强与实时手语翻译器研究
在图像处理和辅助交流领域,背光图像增强和手语翻译器的开发一直是重要的研究方向。下面将为大家详细介绍这两方面的研究成果。
背光图像感兴趣区域增强
背光图像通常存在低亮度和对比度不足的问题,特别是在欠曝光区域。为了解决这些问题,研究人员提出了一种主要针对感兴趣区域(ROI)的增强方法。
现有技术概述
在图像处理领域,有多种方法可用于增强低对比度图像。例如,在离散余弦变换(DCT)域中利用随机共振,基于傅里叶系数的噪声增强迭代处理可对低对比度图像进行增强;Martorell等人提出了一种基于DCT变换的多曝光融合新算法;基于脊频率估计的曲线Gabor滤波器可用于曲线区域和图像增强;Morel等人提出了一种简单的梯度域方法来消除不均匀照明的影响并保留图像细节;Huang等人提出了一种基于CNN的Unet模型和混合损失函数来增强低光照图像。
背光图像增强通常使用多个色调映射来进行对比度增强和图像不同区域的调整,结果是所有这些处理和图像融合算法的组合。多步方法则基于传输系数计算、基于传输系数生成多个曝光以及图像融合来增强背光图像。
提出的方法
该方法主要分为三个部分:亮度和对比度增强技术、保留边界信息以及融合所有特征信息。具体步骤如下:
1. 分离通道 :将输入的三通道图像(红、绿、蓝)分离,以便进行单独处理。
2. 色调映射 :
- 选择两种全局色调映射操作,即伽马校正和对数变换。
- 伽马校正公式:$G(\gamma)(I) = 255 \ti