49、实时嵌入式平台手语翻译器及复杂梯度函数描述符研究

实时嵌入式平台手语翻译器及复杂梯度函数描述符研究

1. 手语翻译系统现状

在手语翻译系统中,存在基于柔性传感器和基于视觉的两种主要类型。
- 基于柔性传感器的系统 :柔性传感器会产生不同的电流值,这些值经过信号调理电路处理后,被传输到微控制器。微控制器根据获取的信号,向显示器和扬声器等输出设备发出相应指令。该系统实时性能良好,因为几乎不需要进行信号和图像处理。然而,它使用的柔性传感器存在缺点,如易碎,长时间使用后输出值会发生变化。
- 基于视觉的系统 :不依赖柔性传感器,而是依靠相机输入。这类系统大多使用卷积神经网络对手势进行分类。不同研究采用了不同的卷积神经网络:
- Pardasani等人使用了类似于LeNet5的卷积神经网络对手势进行分类,但该分类器层数较少,性能未达预期。
- Masood等人使用VGG16作为手语分类器,VGG16架构准确,性能可观,但参数超过1亿,不适合在嵌入式平台上实时运行,且该研究主要关注分类器训练,未涉及感兴趣区域提取和分割等问题,在不同光照和背景条件下分类性能不佳。
- Shahriar等人的研究克服了Masood等人研究的不足,重点关注分割和感兴趣区域提取等预处理步骤。他们使用YCbCr颜色空间进行肤色分割,然后进行形态学操作以消除不一致性,最后获取手部掩码的边界框,裁剪包含手部的图像并输入卷积神经网络进行分类。该系统能在不同光照和背景条件下工作,但使用的AlexNet参数超过6000万,不适合实时性能。

目前,开发适用于嵌入式平台的系统受到的关注较少。虽然其他研究报告的准确性和性能可观,但从实际角度考虑,开发内存高效、能成功部署在嵌入式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值