50、基于复梯度函数(CGF)的描述符在虹膜生物识别和动作识别中的应用

基于复梯度函数(CGF)的描述符在虹膜生物识别和动作识别中的应用

在计算机视觉领域,设计高效的局部描述符一直是一个具有挑战性的任务。传统的描述符如方向梯度直方图(HOG)和尺度不变特征变换(SIFT)等,都利用了图像梯度信息。本文将介绍一种基于复梯度函数(CGF)的新型描述符,它在虹膜生物识别和深度序列的人类动作识别中展现出了良好的性能。

1. 相关工作

在计算机视觉任务中,局部描述符起着至关重要的作用。目前,已经有许多描述符工具被提出,以提高图像处理算法的效率和准确性。以下是一些常见的局部描述符:
- LBP(局部二值模式) :由Ojala等人提出,是一种灰度不变的局部二值描述符,定义在3×3的邻域内。
- SIFT(尺度不变特征变换) :由Lowe设计,通过计算关键点周围区域的梯度幅度和方向,并使用高斯窗口进行加权,最后将这些值累积到方向直方图中。
- SURF(加速稳健特征) :由Bay等人基于Hessian矩阵设计,该矩阵包含高斯二阶偏导数(拉普拉斯高斯 - LoG)。

除了上述描述符,还有许多基于图像梯度的描述符,如PCA - SIFT、梯度位置和方向直方图(GLOH)、Weber局部描述符(WLD)等。这些描述符在不同的应用场景中都取得了一定的效果。

2. 提出的描述符

图像梯度是灰度图像的一个重要属性,它能够反映图像的光照变化、像素值的变化量和变化方向。本文提出的基于复梯度函数(CGF)的描述符,将每个输入像素的空间坐标、像素值、梯度幅度和方向映射到复平面上,利用这些信息来描述图像

内容概要:本文档主要展示了C语言中关于字符串处理、指针操作以及动态内存分配的相关代码示例。首先介绍了如何实现键值对(“key=value”)字符串的解析,包括去除多余空格根据键获取对应值的功能,并提供了相应的测试用例。接着演示了从给定字符串中分离出奇偶位置字符的方法,并将结果分别存储到两个不同的缓冲区中。此外,还探讨了常量(const)修饰符在变量指针中的应用规则,解释了不同类型指针的区别及其使用场景。最后,详细讲解了如何动态分配二维字符数组,并实现了对这类数组的排序与释放操作。 适合人群:具有C语言基础的程序员或计算机科学相关专业的学生,尤其是那些希望深入理解字符串处理、指针操作以及动态内存管理机制的学习者。 使用场景及目标:①掌握如何高效地解析键值对字符串并去除其中的空白字符;②学会编写能够正确处理奇偶索引字符的函数;③理解const修饰符的作用范围及其对程序逻辑的影响;④熟悉动态分配二维字符数组的技术,并能对其进行有效的排序清理。 阅读建议:由于本资源涉及较多底层概念技术细节,建议读者先习C语言基础知识,特别是指针内存管理部分。在学习过程中,可以尝试动手编写类似的代码片段,以便更好地理解掌握文中所介绍的各种技巧。同时,注意观察代码注释,它们对于理解杂逻辑非常有帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值