基于复梯度函数(CGF)的描述符在虹膜生物识别和动作识别中的应用
在计算机视觉领域,设计高效的局部描述符一直是一个具有挑战性的任务。传统的描述符如方向梯度直方图(HOG)和尺度不变特征变换(SIFT)等,都利用了图像梯度信息。本文将介绍一种基于复梯度函数(CGF)的新型描述符,它在虹膜生物识别和深度序列的人类动作识别中展现出了良好的性能。
1. 相关工作
在计算机视觉任务中,局部描述符起着至关重要的作用。目前,已经有许多描述符工具被提出,以提高图像处理算法的效率和准确性。以下是一些常见的局部描述符:
- LBP(局部二值模式) :由Ojala等人提出,是一种灰度不变的局部二值描述符,定义在3×3的邻域内。
- SIFT(尺度不变特征变换) :由Lowe设计,通过计算关键点周围区域的梯度幅度和方向,并使用高斯窗口进行加权,最后将这些值累积到方向直方图中。
- SURF(加速稳健特征) :由Bay等人基于Hessian矩阵设计,该矩阵包含高斯二阶偏导数(拉普拉斯高斯 - LoG)。
除了上述描述符,还有许多基于图像梯度的描述符,如PCA - SIFT、梯度位置和方向直方图(GLOH)、Weber局部描述符(WLD)等。这些描述符在不同的应用场景中都取得了一定的效果。
2. 提出的描述符
图像梯度是灰度图像的一个重要属性,它能够反映图像的光照变化、像素值的变化量和变化方向。本文提出的基于复梯度函数(CGF)的描述符,将每个输入像素的空间坐标、像素值、梯度幅度和方向映射到复平面上,利用这些信息来描述图像