54、在线手写孟加拉语和天城文基本字符识别:基于迁移学习的方法

在线手写孟加拉语和天城文基本字符识别:基于迁移学习的方法

1. 引言

在手写识别领域,深度学习方法已得到广泛应用,相比传统机器学习方法,在识别准确率上表现更优,但也存在输入数据库规模、计算时间、功耗和成本等方面的开销,同时在深度神经网络(DNN)层中调整权重和偏差也较为复杂。为解决这些问题,迁移学习方法应运而生。迁移学习利用预训练模型的权重和偏差,在不同数据集上训练模型,可节省训练时间,降低初始化权重和偏差的复杂度。本文探讨了迁移学习方法在在线手写孟加拉语和天城文基本字符识别中的应用,并对比了使用预训练模型和从头开始训练的效果。

2. 数据集

本次研究使用迁移学习方法识别在线手写孟加拉语和天城文基本字符。孟加拉语数据库包含10000个样本,分为50个字符类,每个类有200个样本;天城文数据库包含1800个样本,分为36个类,每个类有50个样本。由于所使用的模型仅处理图像信息,因此将在线手写信息转换为字符图像。以下是样本图像示例:
样本图像

3. 方法

迁移学习模型是深度学习模型的扩展,以预训练模型为起点,用于解决相关问题。本研究使用了三个在ImageNet数据集上预训练的模型:Inception-v3、ResNet50和VGG-16,用于从孟加拉语和天城文在线手写字符数据集中学习特征。以下是各模型的详细介绍:

3.1 Inception-V3

Inception-V3源于GoogleNet,在1000类数据集上训练。Inception-V1将1×1、3×3和5×5卷积层合并在Inception层中,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值