由布朗运动驱动的扩散型随机微分方程的图像解
1 引言
可视化是一种通过图像、图表或动画来传达信息的重要过程。它能让人们快速洞察因果关系、形成假设并发现视觉模式。随机微分方程在物理、生物、工程和金融等领域有广泛应用,如非线性滤波、湍流输运、随机薛定谔方程等。然而,该领域由于缺乏对解的可视化,使得非数学家难以理解其解。为填补这一空白,下面将分析伊藤型随机微分方程的图像解。
随机积分是随机微分方程发展的关键组成部分。早期,随机微分方程的研究主要集中在随机常微分方程,后来随机偏微分方程也得到了研究。随机微分方程与确定性微分方程的区别在于它包含噪声项,如白噪声(布朗运动的导数)和莱维型噪声,其噪声路径不规则且处处不可微,因此需要结合确定性微积分和随机微积分来处理。
2 布朗运动
2.1 随机游走
随机游走 (M(K, ω)) 是一个随机过程,定义如下:
(M(K, ω) = \sum_{j = 1}^{K} X_j(ω))
其中 (ω) 是状态变量,(P) 是概率,(X_j(ω) = {1, -1}) 是随机变量,满足:
(P(X_j(ω) = 1) = p)
(P(X_j(ω) = -1) = 1 - p)
当 (i \neq j) 时,(X_i(ω)) 和 (X_j(ω)) 相互独立。若 (p = \frac{1}{2}),则 (M(K, ω)) 是对称随机游走,(M(K, ω)) 可能的状态数为 (2^K)。
2.2 布朗运动
布朗运动 (B(t, ω)) 定义为:
(B(t, ω) = \lim_{n \to \infty} B_n