混沌振荡器的特性与分析
1. 蔡氏电路系统概述
蔡氏电路是一个常用于研究混沌振荡器特性的系统,其函数表达式为 (f(x) = bx + \frac{1}{2}(a - b)[|x + 1| - |x - 1|]),其中 (x) 和 (y) 分别是电容器 1 和 2 上的电压,(z) 是电感中的电流。通过选择不同的参数 ((α, β, a, b)),该系统可以呈现出多种混沌和非混沌吸引子。
2. 三维流到二维映射的示例
2.1 吸引子的选择与获取
考虑了两种对应不同系统参数集的吸引子:
- 环面吸引子:参数为 (α = 1800.0),(β = 10000),(a = -1.026),(b = -0.982)。
- 混沌吸引子:参数为 (α = -6.69191),(β = -1.52161),(a = -1.142857),(b = -0.714286)。
这些吸引子可通过对相关方程(Eqs. 2.15 - 2.18)进行数值积分得到,也能在实验室中实现。
2.2 环面运动的特点
环面运动是一种特殊的非混沌运动,系统动力学由两个不可公度的频率表征,即两个频率的比值为无理数。轨迹发生在具有甜甜圈拓扑结构的表面上,一个频率表征沿环面边缘的闭曲线在相空间中的旋转,另一个频率对应于在环面表面绕该边缘的旋转。
2.3 庞加莱映射的构建
使用 (x = x_P)((x_P) 为 (x(t)) 的平均值)的截面来获取庞加莱映射。这些截面是垂直于 (x - y) 平面的平面,它们与 (x - y) 平面的交线为直线。当轨迹沿 (x) 增加的方