混沌振荡器的同步、控制及相关特性分析
1. 不同维度下的吸引子与李雅普诺夫指数
在三维空间中,存在多种类型的吸引子,如准周期吸引子 ${\lambda_1 = 0, \lambda_2 = 0, \lambda_3 < 0}$、极限环 ${\lambda_1 = 0, \lambda_2 < 0, \lambda_3 < 0}$ 和不动点 ${\lambda_1 < 0, \lambda_2 < 0, \lambda_3 < 0}$。当 $\lambda_1 < |\lambda_3|$ 时,椭球体的体积小于球体体积,即 $V (t) \sim a \cdot b \cdot c \sim R^3 \cdot exp (\lambda_1 -|\lambda_3|) < V (0)$。
在超过三维的空间中,可能存在耗散超混沌吸引子,这种吸引子具有多个正的李雅普诺夫指数。例如,在四维相空间中,超混沌吸引子的李雅普诺夫指数谱为 ${\lambda_1 > 0, \lambda_2 > 0, \lambda_3 = 0, \lambda_4 < 0}$,且 $\lambda_1 + \lambda_2 < |\lambda_4|$。此外,还存在两种可能的混沌吸引子:${\lambda_1 > 0, \lambda_2 = 0, \lambda_3 = 0, \lambda_4 < 0}$ 且 $\lambda_1 < |\lambda_4|$,以及 ${\lambda_1 > 0, \lambda_2 = 0, \lambda_3 < 0, \lambda_4 < 0}$ 且 $\lambda_1