5、混沌振荡器的同步、控制及相关特性分析

混沌振荡器的同步、控制及相关特性分析

1. 不同维度下的吸引子与李雅普诺夫指数

在三维空间中,存在多种类型的吸引子,如准周期吸引子 ${\lambda_1 = 0, \lambda_2 = 0, \lambda_3 < 0}$、极限环 ${\lambda_1 = 0, \lambda_2 < 0, \lambda_3 < 0}$ 和不动点 ${\lambda_1 < 0, \lambda_2 < 0, \lambda_3 < 0}$。当 $\lambda_1 < |\lambda_3|$ 时,椭球体的体积小于球体体积,即 $V (t) \sim a \cdot b \cdot c \sim R^3 \cdot exp (\lambda_1 -|\lambda_3|) < V (0)$。

在超过三维的空间中,可能存在耗散超混沌吸引子,这种吸引子具有多个正的李雅普诺夫指数。例如,在四维相空间中,超混沌吸引子的李雅普诺夫指数谱为 ${\lambda_1 > 0, \lambda_2 > 0, \lambda_3 = 0, \lambda_4 < 0}$,且 $\lambda_1 + \lambda_2 < |\lambda_4|$。此外,还存在两种可能的混沌吸引子:${\lambda_1 > 0, \lambda_2 = 0, \lambda_3 = 0, \lambda_4 < 0}$ 且 $\lambda_1 < |\lambda_4|$,以及 ${\lambda_1 > 0, \lambda_2 = 0, \lambda_3 < 0, \lambda_4 < 0}$ 且 $\lambda_1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值