扰动混沌系统以控制混沌
1. 比例扰动反馈控制混沌
在一些实验中,通过测量某些活动来确定突发间隔,进而明确突发的性质、定位不稳定轨道,并拟合其不稳定性。采用单脉冲或双脉冲的比例扰动反馈,能够降低混沌程度,甚至在部分实验中抑制混沌。
此外,有研究报告了通过对系统参数进行小扰动来抑制流体对流中的湍流。其实验系统是一个环形容器中的水,容器主圆所在平面垂直放置。环形上半部分由外部水流冷却,下半部分由电阻均匀加热,从而产生流体的对流循环。当加热速率足够大时,流体流动会变为湍流。研究人员选择加热速率 (W) 作为控制参数,对其施加小于标称值 5% 的固定变化量 (\delta W) 以使流体层流化。他们没有构建庞加莱映射来设计控制律,而是测量容器顶部和底部的温度差。当温度差超过平均值时施加扰动 (\delta W),低于平均值时施加 (-\delta W)。这种控制方法成功地将湍流动力学转变为层流,实现了对混沌的控制。该方法与比例扰动反馈有一定相似性,都是使系统状态向固定点移动。
2. 皮拉加斯方法(Pyragas 方法)
皮拉加斯在 1992 年提出了一种方法,用于在系统连续时间演化过程中,通过对系统参数施加小的连续时间控制来稳定不稳定的周期轨道,而非在表面交叉处进行离散控制,这就是延迟反馈控制。数值模拟和实验证明,该方法易于实现,并且至少对不太不稳定(即周期较短)的周期轨道有效。
2.1 延迟反馈控制
皮拉加斯方法假设系统在连续时间内演化,系统变量 (x = (x_1, x_2, …, x_d) \in R^d) 的时间演化由自治非线性流描述:
(\frac{dx}{dt} = F (x;p)) (5.13)