混沌同步与耦合振荡器动力学研究
1. 数值模拟与实验
在混沌同步的研究中,Lorenz 和 Rössler 模型常被用于数值研究同步现象。对于两个相互耦合的 Lorenz 振荡器,采用不同的参数值(σ = 10,r = 28,b = 8/3)进行数值研究,通过不同算法计算第一 Lyapunov 指数和第一横向 Lyapunov 指数,以展示耦合混沌振荡器同步的主要特性。对两个仅通过第一个变量相互耦合的 Rössler 振荡器的研究表明,在一定范围内,横向 Lyapunov 指数 λ⊥₁ 的行为与 Lorenz 系统类似,呈现单调衰减,存在一个过渡点 CT,在该点横向指数变为负值。当耦合强度增大到 C ≳5CT 时,指数变为正值,稳定同步消失。
在实验方面,通过混沌电路实现了相互耦合的相同系统的同步。以两个耦合的 Chua 电路为例,其耦合方案如下:
[
\begin{cases}
\frac{dx_{1,2}}{dt} = \alpha [y_{1,2} - x_{1,2} - f(x_{1,2})] \
\frac{dy_{1,2}}{dt} = x_{1,2} - y_{1,2} + z_{1,2} + C(y_{2,1} - y_{1,2}) \
\frac{dz_{1,2}}{dt} = -\beta y_{1,2}
\end{cases}
]
可以通过一个实验装置实现,只需去掉图中间的运算放大器,用可调电阻 RC 连接两个电路,耦合强度 C ∝1/RC。通过足够大的耦合强度,可通过参数图观察到同步状态。
此外,使用不同电路的混沌同步现象也有报道。例如,在两个相互耦合的激光器实验中,采用 Nd