非常好!神经网络在分类问题中有很广泛的应用,花朵识别是其中一个常见的任务。你可以使用MATLAB来实现神经网络模型,并对其进行训练和测试。
下面是一个示例的MATLAB源码,用于实现基于神经网络的花朵识别分类器:
% 花朵识别分类器
% 步骤1:准备数据
% 加载数据集
load iris_dataset.mat
% 将数据集分为训练集和测试集
[trainInd, valInd, testInd] = divideblock(150, 0.7, 0.0, 0.3);
trainInputs = meas(:, trainInd);
trainTargets = dummyvar(categorical(species(trainInd)))';
testInputs = meas(:, testInd);
testTargets = dummyvar(categorical(species(testInd)))';
% 步骤2:创建神经网络模型
net = patternnet([10, 5]); % 创建一个有两个隐藏层的模型
net.trainFcn = 'trainscg'; % 设置训练函数为SCG算法
net.divideFcn = 'dividerand'; % 设置数据集划分函数为随机划分
net.divideParam.trainRatio = 0.7; % 设置训练集比例
net.divideParam.valRatio = 0.0; % 设置验证集比例
net.divideParam.testRatio = 0.3; % 设置测试集比例
% 步骤3:训练模型
[net, tr] = train(net, trainInputs, trainTargets);
% 步骤4:测试模型
testO