作者:禅与计算机程序设计艺术
1.简介
Neural Machine Translation (NMT) is a critical component of modern NLP systems that has become the de facto standard for processing human language. It enables machines to understand and generate natural language with high accuracy, which is especially useful in areas such as speech recognition, chatbots, customer service automation, and information retrieval. However, NMT models are often evaluated on established benchmarks like WMT14 or Europarl but have been limited by their size, scope, and diversity of data sets. In this paper, we introduce an alternative benchmark called The Pile, designed specifically for evaluating neural machine translation models on different languages without requiring access to any parallel corpora. We the