深度学习入门教程——基础概念,以及不同深度学习框架之间的差异和联系

本文是深度学习的入门教程,介绍了神经网络、深度学习的基本概念,如神经元模型、多层感知机和误差逆传播法。此外,还讨论了数据、标签、目标函数的重要性,以及模型选择和正则化策略。同时,详细讲解了Python编程在深度学习中的应用,包括数据处理和深度学习框架的选择,如TensorFlow、Keras、PyTorch等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

深度学习(Deep Learning)是指利用多层次神经网络对数据进行学习的一种机器学习方法。它的特点是通过深层次神经网络建立起多个非线性模型,从而可以处理高维度、多样化的数据,并最终得出预测结果。深度学习在图像识别、文本识别、语音识别、无人驾驶等领域有广泛应用。本文将系统、全面地介绍深度学习的相关概念和技术,让读者能够快速了解深度学习的基本知识、技术路线和发展方向。

本文面向没有任何机器学习或深度学习基础的读者,力求提供最简单易懂的深度学习入门教程。其次,文章着重于介绍深度学习的基础概念,以及不同深度学习框架之间的差异和联系。希望读者能够进一步理解深度学习背后的一些理论和实际,并能够根据自身需求和兴趣,结合实际工程项目实践深度学习。

2.基本概念及术语介绍

2.1 神经网络与深度学习

2.1.1 神经元模型

神经网络由感知器组成,每个感知器都是一个单独的神经元,具有输入、输出和权重三种基本功能,如图所示:
  输入:表示输入信号的一组向量。它可以是连续的实值特征,如图像的像素值;也可以是离散的符号特征,如文本中的词语、音频中的音符。
  输出:输出是感知器的活动状态,通常用0或1表示。如果它是1,则称为激活状态(active state)。
  权重:每一个连接到一个节点的权值,决定了该节点的影响力。较大的权值会使相应节点产生更大的影响,从而激活更多的后续节点。
  激活函数:激活函数是神经网络的关键部件之一,它负责从输入计算输出

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值