作者:禅与计算机程序设计艺术
1.简介
2020年,数字技术、互联网和人工智能的飞速发展已经带动了电影业界的变化。国产、日韩等国别影院的蓬勃发展,引起了社会广泛关注。然而,电影业界的风险和挑战并没有减少,如何建立一个好的电影推荐系统依然是一个重要课题。
1997年由香农、Bellman等发现的“图灵测试”被广泛接受。它表明可以用算法解决复杂的问题。算法可以在一定时间内完成很多计算任务,从而可以提高效率和准确性。20世纪90年代末期,研究人员发现基于用户兴趣的推荐系统能够改善用户体验,在社交媒体网站如YouTube、Facebook等起到促进观看者消费的作用。2001年,亚马逊推出基于用户购买历史及行为模式的推荐系统,帮助用户找到适合自己的产品或服务。2006年,Netflix推出了“剧集推荐”功能,帮助用户找到感兴趣的电视剧。这些推荐系统都基于用户的交互数据(例如观看记录、搜索记录、购物车),以推荐其可能感兴趣的内容。
在电影领域,推荐系统也面临着以下挑战:
- 信息过载——电影数据库每年都产生海量的数据,推荐系统需要快速地处理大量数据的海量检索工作。
- 个性化推荐——每个用户的喜好千差万别,即使是有相似口味的个体,由于观看偏好不同,他/她也会得到不同的推荐结果。
- 时效性要求——推荐系统应时刻跟踪用户的最新反馈,在短时间内做出实时的调整。
为了更好地理解电影推荐系统,本文将从以下几个方面对该领域进行探讨:
- 网络电影推荐系统的构成及特点;
- 推荐算法的基础知识和算法实现;
- 推荐系统在各类电影平台上的运用。