作者:禅与计算机程序设计艺术
1.简介
随着人工智能技术的发展,机器学习作为其中的一个分支领域越来越受到关注,特别是在图像、文本等领域,由于数据量庞大且复杂性高,传统的基于规则的机器学习方法无法有效地处理如此多的数据。因此,机器学习模型需要更加先进的算法、理论基础和系统设计。近几年来,Google公司推出了一款名为TensorFlow的开源机器学习框架,该框架能够支持很多深度学习模型的训练、验证、预测等流程,并具有强大的可扩展性。本文将向读者介绍TensorFlow及其在深度学习领域的应用。
2. 基本概念术语说明
2.1 TensorFlow
TensorFlow是一个开源的机器学习库,它使用图计算的方式进行深度学习,通过构建计算图可以定义和训练各种机器学习模型。其中图中的节点表示输入或参数,边代表张量运算符,有向无环图(DAG)是TensorFlow计算的主要抽象单元。TensorFlow提供的接口包括Python API、C++ API、命令行接口、JavaScript API等。
2.1.1 计算图(Computation Graph)
图计算的目的是为了更好地描述复杂的数值计算过程,将数学表达式表示成一系列节点和边所构成的有向无环图,每个节点对应数学表达式中的元素,而边则代表着数学运算符。例如,对于两个矩阵