从零开始实现一个简单的分布式计算框架 (168)

本文从分布式计算的基本概念出发,介绍了 MapReduce 和 Spark 的原理,详细讲解了 Spark 的核心组件,如 Spark Context、RDD、DataFrame、DAG 图、Shuffle 和 Partitioner,并提供了 WordCount 和并行排序的代码实例。文章探讨了分布式计算的未来趋势和挑战,适合初学者和进阶者学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

随着信息技术的飞速发展,越来越多的人们开始关注互联网应用服务的新领域——云计算、大数据、人工智能等。而传统的单机应用程序运行在服务器端,遇到网络带宽瓶颈后性能难以满足需求;而分布式计算系统则可以更好地利用集群资源来解决此问题。基于此,作者通过从零开始构建一个简单但功能完整的分布式计算框架来探索分布式计算相关的技术问题。 文章先简单介绍一下它的背景及目的,然后从分布式计算中最基础的概念开始讲起,包括分布式计算的定义、并行计算、分布式调度以及容错机制。之后作者将手把手教你如何搭建一个基于Spark的分布式计算平台,包括如何利用Spark快速编写分布式计算任务、并行化处理,以及如何利用资源管理器对集群进行统一的管理。文章将重点放在代码层面上,详细阐述每一步的代码实现,并在最后给出扩展阅读链接,让读者能够了解分布式计算相关的更多知识。

2.基本概念术语说明

分布式计算

分布式计算(Distributed Computing)是指由多台计算机组成的系统(计算机网络)内的独立计算机共同执行的计算任务。通常来说,分布式计算分为两类:分布式并行计算和分布式存储计算。

分布式并行计算

1978年,在麻省理工学院提出的 MapReduce 模型里,Map 和 Reduce 是两个函数,分别对输入的键值对进行映射和汇总。它以分布式方式对海量数据集进行并行计算,不需要额外的硬件支持,只需要集群中的一组机器即可完成计算任务。其主要特点是易于编程,不受限于单个机器的内存和磁盘容量限制。

近几年,另一种叫作 Apache

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值