作者:禅与计算机程序设计艺术
1.简介
BERT (Bidirectional Encoder Representations from Transformers)是近年来最火的预训练语言模型之一。它的出现使得深度学习在NLP领域取得了前所未有的突破性进展,特别是在文本分类、阅读理解等任务上。本文将对BERT进行系统的回顾,探索其技术内在机理,并通过实践案例引出一些新的研究方向。希望读者能从中受益。
2.基本概念及术语
2.1 Transformer模型
Transformer模型是Google于2017年提出的基于Attention的神经网络结构。它由encoder和decoder两部分组成,其中encoder主要用来把输入序列编码成一个固定长度的向量表示;而decoder则负责根据这个向量表示生成输出序列。相比于传统的RNN或CNN等模型,Transformer拥有以下优点:
-
模型简单、易于并行化处理
-
Attention机制能够捕获全局信息
-
适用于长序列建模
-
可训练性强、泛化能力强
2.2 Pre-trained language model
预训练语言模型(Pre-trained language model),又称预训练LM,是一种利用大量标注数据训练得到