本文将对BERT进行系统的回顾,探索其技术内在机理,并通过实践案例引出一些新的研究方向 BERT Explained: State of the Art Language Model for NLP

BERT(Bidirectional Encoder Representations from Transformers)是预训练语言模型,通过Transformer结构实现了双向信息捕获。文章详细介绍了BERT的基本概念,包括Transformer模型、预训练、Masked LM和Next Sentence Prediction,还探讨了微调、Tokenization、Positional Encoding等关键步骤,并提供代码实例解析BERT的工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

BERT (Bidirectional Encoder Representations from Transformers)是近年来最火的预训练语言模型之一。它的出现使得深度学习在NLP领域取得了前所未有的突破性进展,特别是在文本分类、阅读理解等任务上。本文将对BERT进行系统的回顾,探索其技术内在机理,并通过实践案例引出一些新的研究方向。希望读者能从中受益。

2.基本概念及术语

2.1 Transformer模型

Transformer模型是Google于2017年提出的基于Attention的神经网络结构。它由encoder和decoder两部分组成,其中encoder主要用来把输入序列编码成一个固定长度的向量表示;而decoder则负责根据这个向量表示生成输出序列。相比于传统的RNN或CNN等模型,Transformer拥有以下优点:

  1. 模型简单、易于并行化处理

  2. Attention机制能够捕获全局信息

  3. 适用于长序列建模

  4. 可训练性强、泛化能力强

2.2 Pre-trained language model

预训练语言模型(Pre-trained language model),又称预训练LM,是一种利用大量标注数据训练得到

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值