作者:禅与计算机程序设计艺术
1.简介
SSD(Single Shot MultiBox Detector)是最近几年火热的目标检测算法,在轻量级网络的基础上训练得到性能较优的模型。本文将从SSD的基本原理、结构、损失函数等方面,带领读者深入理解SSD算法。
SSDE(Single-Shot Detection Energy)由一组可微分函数的集合组成。即用神经网络代替手工设计特征和超参数,用自动求导法计算损失函数。相比于传统检测方法,基于深度学习的目标检测可以获得更快的速度,准确率也提升不少。
本文的主要内容包括:
- SSD算法的基本原理;
- SSD的网络结构;
- SSD的损失函数及其优化策略;
- SSD在训练和测试时的样本预处理、锚框生成等;
- 在PASCAL VOC数据集上的实验结果。
2.基本概念及术语介绍
2.1 目标检测相关术语介绍
目标检测(Object detection)通常是指计算机视觉中的一个任务,该任务旨在从图像中识别出多个目标并给予它们对应的类别标签或位置信息,常用的算法有分类器、定位器、回归器和序列标注等。如图1所示,目标检测算法通常有三个步骤:候选区域(Region proposal)、特征学习(Feature learning)、类别判断(Classification)。
2.1.1 候选区域
候选区域(Region proposal)即为选择可能存在