作者:禅与计算机程序设计艺术
1.简介
HTM (Hierarchical Temporal Memory) 是一种能够快速学习、记忆并解决复杂问题的神经网络模型。在自然语言处理领域,人们越来越依赖于深层次认知模型来理解和交流,例如图灵测试、注意力机制、意图推断、对话系统等。但当前还没有一种通用的深层次认知模型能同时兼顾特征提取、知识存储和学习的能力。相反,现有的多种深层次认知模型各有千秋,如模糊推理机(Fuzzy Inference System)、半监督学习(Semi-supervised Learning)、基于规则的系统(Rule-based System)、深度学习(Deep Learning)等。这些模型的共同特点是抽象出不同层次的神经元,通过不同的连接方式进行信息传递。本文将介绍什么是HTM模型及其主要原理和技术细节。
2.基本概念和术语说明
2.1 模型结构
HTM模型由四个主要部分组成:输入层、神经网络、输出层和联想器。如下图所示:
2.1.1 输入层
输入层接收外部输入,例如文本数据或图像数据。HTM模型可以处理各种输入形式,包括静态数据、时间序列数据、视频和音频信号等。
2.1.2 神经网络
神经网络是一个递归网络,它接受输入并生成输出,同时也接受反馈信号并修改自己的权重。HTM模型中使用的神经网络有几种类型,如:局部回放网络(Local Recurrent Network)、时序预测网络(Temporal