作者:禅与计算机程序设计艺术
1.简介
推荐系统是一个十分重要的、触目惊心的数据挖掘方法论,其广泛应用于电子商务、移动互联网、社交网络、游戏领域等诸多领域。由于各种新兴的网络经济形态的出现,电子商务平台的用户行为数据的爆炸式增长,使得基于人口统计学数据和商品购买习惯分析的商品推荐系统几乎无法实施。如何从海量信息中有效地提取出有价值的信息,成为当前AI学习的热点。而随着人工智能技术的飞速发展,推荐系统也迎来了蓬勃发展的时代。在本文中,我们将围绕推荐系统在电子商务中的应用,介绍推荐系统的基本概念、基础知识、推荐算法及相关研究进展,并用实际例子展示推荐系统在电子商件中的运用。最后,我们还将对未来的挑战给出展望。
2.推荐系统概念及相关定义
(1)什么是推荐系统?
推荐系统(Recommendation System),也称为“协同过滤”或“基于内容的推荐”,是指根据用户过去的历史行为、偏好、兴趣等信息,分析用户的潜在喜好,为用户提供具有相似兴趣爱好的产品或服务的个性化推荐。推荐系统通常分为静态和动态两种类型。静态类型的推荐系统是在建模阶段就已经完成推荐的过程,也就是说,系统根据某些特定的规则进行推荐,例如商品的类别标签、物品间的关系等。然而,这种系统往往存在不足,主要体现在以下几个方面:
- 在很长的一段时间内,系统无法准确反映用户的真正需求;
- 用户的兴趣变化比较平缓,系统无法及时调整推荐结果;
- 没有考虑到用户对产品的长尾分布;
- 对新颖或冷门的产品没有适应力。
而动态类型的推荐系统