作者:禅与计算机程序设计艺术
1.背景介绍
人工智能(Artificial Intelligence,AI)和机器学习(Machine Learning,ML)在当今IT行业占有重要地位,并将成为IT产业链中不可或缺的一环。如何构建一个稳健、高效的AI与ML系统架构是各大公司面临的难题之一。为了帮助大家更好地理解AI与ML系统架构的设计原理、关键技术、应用场景、优缺点等,本文将从以下几个方面进行阐述:
1) AI与ML的历史 2) AI与ML系统架构演进历程 3) AI架构设计原则及方法论 4) ML框架设计原则及方法论 5) 典型AI架构案例分析 6) AI与ML系统部署落地方案 7) 总结与展望
2.核心概念与联系
AI、ML与硬件
人工智能
人工智能(Artificial Intelligence,AI),又称计算机智能,指研究、开发能够模仿、自动化、自我学习和改造的智能机器人的科技。它是指让计算机具有智能特征,如视觉、语音、动作识别等能力,从而实现对人的理解、决策、处理任务、解决问题的能力。其研究成果涵盖了人工神经网络、模式识别、规划、决策和推理等领域,涉及到计算机视觉、图像处理、语言和文字处理、数据挖掘、深度学习、强化学习、计算理论、统计学、数据库管理、算法工程、信息安全等多个领域。根据维基百科定义,人工智能由基于符号逻辑、概率论、机器学习、博弈论、计算理论、信息论等多学科的研究人员共同研制而成,具有智能、自主学习、自我改造、自然语言理解等特点。
机器学习
机器学习(Machin