Python 实战人工智能数学基础:博弈论

本文介绍了博弈论的基础知识,包括核心概念如纳什均衡、蒙特卡洛树搜索(MCTS)和赌徒策略。MCTS是一种在复杂决策场景下的强化学习方法,通过模拟和优化探索/利用策略来选取最优子节点。赌徒策略分为非确定性和确定性两种,常用于评估其他策略。文章提供了MCTS和赌徒策略的代码实例和详细解释。

作者:禅与计算机程序设计艺术

1.背景介绍

博弈论(Game Theory)是一门研究多玩家合作博弈解决问题的方法,也是数学竞赛中的一个重要分支。它在很多领域中都扮演着重要角色,例如军事、经济、物理、生态等领域。其根本目的就是为了更好地分配资源、平衡各方之间的利益,并让双方都有收获和满足感。因此,掌握博弈论对于掌握复杂多变的计算机科学、运筹学、控制理论、经济学等相关学科非常重要。

博弈论最早起源于亚当·斯密(Aristotle Sociable)的博弈论著作,并通过经验法则、分类方法、自组织博弈、进化博弈等形式进行了理论化和实践化。直到20世纪80年代,随着计算机的发展,博弈论也成为计算机科学的一个热点。

2.核心概念与联系

博弈论主要包括以下七个主要的概念及其联系:

  • 博弈:指多人间相互博弈的过程,博弈过程中双方都要遵守游戏规则,通过博弈谋取最大的收益。
  • 游戏规则:定义双方行为和结果的规范。游戏规则往往由规则制定者制订,制定者可以设置或修改规则以使得游戏更有趣、更有意义或者更容易被接受。游戏规则还包括决定每轮游戏初始条件、每个回合的顺序、每个回合的阶段、每个玩家的动作和奖励、终止条件等内容。
  • 纳什均衡:指所有参与者能够实现预期的均衡收益,即游戏不可能出现任何一个参与者获胜或失去更多的收益的情况。通常情况下,纳什均衡指的就是两种或更多策略中选择获胜概率和累积收益最大的策略作为最终策略。
  • 零和游戏:指所有参与者都会得到相同的结果(例如一场比赛),也就是说,每一种策略的优点都是正面的,每一种策略的缺点都是负面的。
  • 轮空游戏:指存
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值