1. 背景介绍
1.1. 什么是异常检测?
异常检测,顾名思义,就是在数据中识别出与预期模式或行为不同的异常项。这些异常项通常被称为离群值、异常值或噪点。它们可能由多种因素引起,例如数据输入错误、测量误差、欺诈行为或系统故障等。
1.2. 异常检测的重要性
异常检测在各个领域都发挥着至关重要的作用,例如:
- 金融欺诈检测: 识别信用卡交易中的异常模式,以防止欺诈行为。
- 网络入侵检测: 监测网络流量,识别出潜在的网络攻击行为。
- 医疗诊断: 分析病人的医疗记录,识别出异常的健康状况。
- 工业故障检测: 监控设备运行状况,识别出潜在的故障风险。
- 数据清洗: 在数据分析之前,识别并清除异常数据,以提高数据质量。
1.3. 异常检测的挑战
异常检测面临着一些挑战,例如:
- 异常的定义模糊: 异常的定义往往取决于具体的应用场景,没有一个通用的定义。
- 数据不平衡: 异常数据通常只占数据集中的一小部分,导致模型训练困难。
- 噪声干扰: 数据中可能存在噪声,难以区分噪声和真正的异常。