transformer

Transformer模型是Google在2017年提出的革命性NLP模型,它摒弃了传统的RNN/LSTM,采用自注意力机制和多头注意力,有效处理长距离依赖。模型在机器翻译、文本摘要、问答系统等多个任务上表现优异,引领了NLP领域的变革。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Transformer:自然语言处理的革命性突破

1.背景介绍

自然语言处理(NLP)是人工智能领域的一个重要分支,旨在让计算机能够理解、生成和处理人类语言。近年来,随着深度学习技术的发展,NLP领域取得了长足的进步。而其中最具革命性的突破之一,就是Google在2017年提出的Transformer模型。

Transformer模型的出现,颠覆了传统的序列建模方法,如循环神经网络(RNN)和长短期记忆网络(LSTM)。它采用了全新的自注意力机制(Self-Attention Mechanism),能够更好地捕捉序列中长距离的依赖关系,并实现了大规模并行计算。Transformer在机器翻译、文本摘要、问答系统等NLP任务上取得了惊人的性能,引领了NLP领域的新潮流。

2.核心概念与联系

要理解Transformer的工作原理,需要先了解几个核心概念:

2.1 自注意力机制(Self-Attention Mechanism)

自注意力机制是Transformer的核心,它允许模型在处理序列中的每个元素时,都能够"注意"到序列中的其他位置。通过计算每个位置与其他位置之间的相关性,模型可以动态地调整对不同位置的关注程度,从而更好地捕捉序列内部的依赖关系。

2.2 位置编码(Positional Encoding)

由于Transformer不像RNN那样显

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值