Transformer:自然语言处理的革命性突破
1.背景介绍
自然语言处理(NLP)是人工智能领域的一个重要分支,旨在让计算机能够理解、生成和处理人类语言。近年来,随着深度学习技术的发展,NLP领域取得了长足的进步。而其中最具革命性的突破之一,就是Google在2017年提出的Transformer模型。
Transformer模型的出现,颠覆了传统的序列建模方法,如循环神经网络(RNN)和长短期记忆网络(LSTM)。它采用了全新的自注意力机制(Self-Attention Mechanism),能够更好地捕捉序列中长距离的依赖关系,并实现了大规模并行计算。Transformer在机器翻译、文本摘要、问答系统等NLP任务上取得了惊人的性能,引领了NLP领域的新潮流。
2.核心概念与联系
要理解Transformer的工作原理,需要先了解几个核心概念:
2.1 自注意力机制(Self-Attention Mechanism)
自注意力机制是Transformer的核心,它允许模型在处理序列中的每个元素时,都能够"注意"到序列中的其他位置。通过计算每个位置与其他位置之间的相关性,模型可以动态地调整对不同位置的关注程度,从而更好地捕捉序列内部的依赖关系。
2.2 位置编码(Positional Encoding)
由于Transformer不像RNN那样显