从零开始大模型开发与微调:其他细节

本文介绍了大模型如GPT、BERT、XLNet的微调过程,包括加载预训练模型、修改输出层、准备数据集、训练与评估,并通过Python的Transformers库展示了基于BERT的文本分类任务实践,探讨了大模型在自然语言处理中的广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从零开始大模型开发与微调:其他细节

1.背景介绍

随着人工智能技术的不断发展,大型语言模型已经成为当前最受关注的研究热点之一。这些模型通过在海量文本数据上进行预训练,学习到了丰富的语言知识,并展现出惊人的泛化能力。大模型可用于多种自然语言处理任务,如机器翻译、文本生成、问答系统等,极大推动了人工智能技术的发展。

然而,训练这样的大模型需要耗费大量的计算资源,对于普通开发者来说,从头开始训练一个大模型是一件极其困难的事情。幸运的是,目前已有一些优秀的大模型可供调用和微调,如GPT、BERT、XLNet等,这使得普通开发者也能享受大模型的红利。本文将介绍如何基于现有的大模型,进行微调和开发,以满足特定的应用需求。

2.核心概念与联系

2.1 大模型

所谓大模型,是指参数量极大(通常超过十亿)、在大规模语料库上进行预训练的语言模型。这些模型能够捕捉到丰富的语义和语法知识,为下游任务提供有力的基础。常见的大模型有:

  • GPT(Generative Pre-trained Transformer):由OpenAI开发,是一种自回归语言模型,擅长生成类任务。
  • BERT(Bidirectional Encoder Representations from Transformers):由谷歌开发,是一种双向编码器模型,擅长理解类任务。
  • XLNet:由卡内基梅隆大学与谷歌合作开发,是一种泛化的自回归预训练模型。

2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值