从零开始大模型开发与微调:其他细节
1.背景介绍
随着人工智能技术的不断发展,大型语言模型已经成为当前最受关注的研究热点之一。这些模型通过在海量文本数据上进行预训练,学习到了丰富的语言知识,并展现出惊人的泛化能力。大模型可用于多种自然语言处理任务,如机器翻译、文本生成、问答系统等,极大推动了人工智能技术的发展。
然而,训练这样的大模型需要耗费大量的计算资源,对于普通开发者来说,从头开始训练一个大模型是一件极其困难的事情。幸运的是,目前已有一些优秀的大模型可供调用和微调,如GPT、BERT、XLNet等,这使得普通开发者也能享受大模型的红利。本文将介绍如何基于现有的大模型,进行微调和开发,以满足特定的应用需求。
2.核心概念与联系
2.1 大模型
所谓大模型,是指参数量极大(通常超过十亿)、在大规模语料库上进行预训练的语言模型。这些模型能够捕捉到丰富的语义和语法知识,为下游任务提供有力的基础。常见的大模型有:
- GPT(Generative Pre-trained Transformer):由OpenAI开发,是一种自回归语言模型,擅长生成类任务。
- BERT(Bidirectional Encoder Representations from Transformers):由谷歌开发,是一种双向编码器模型,擅长理解类任务。
- XLNet:由卡内基梅隆大学与谷歌合作开发,是一种泛化的自回归预训练模型。