代数群引论:B.2 环上的fppf层

代数群引论:B.2 环上的fppf层

1.背景介绍

代数几何是一门研究代数方程和代数变换的数学分支。在代数几何中,环(ring)扮演着基础的角色。环是一种代数结构,具有两种代数运算:加法和乘法,满足结合律、交换律和分配律等一系列代数公理。环上的层(sheaf)是一种将代数结构与拓扑空间联系起来的重要工具。

fppf层(faithfully flat and finitely presented sheaf)是环上一种特殊的层,具有一些良好的代数几何性质。它广泛应用于代数几何、代数拓扑和代数数论等数学领域。本文将深入探讨fppf层在环上的定义、性质及应用。

2.核心概念与联系

2.1 层(Sheaf)的概念

层是一种将代数结构与拓扑空间联系起来的数学对象。更精确地说,给定一个拓扑空间 $X$ 和一个值域 $\mathcal{A}$ (通常是环),一个 $\mathcal{A}$ 上的层 $\mathcal{F}$ 是一个赋值,将 $X$ 的每个开集 $U$ 与一个 $\mathcal{A}$-模 $\mathcal{F}(U)$ 相关联,并满足一些条件。

2.2 fppf层的定义

对于一个环 $A$,称一个 $A$-模 $M$ 是有限展示的(finitely presented),如果存在一个有限生成的投射 $A$-模 $P$ 和一个有限生成的平坦 $A$-模 $Q$,使得存在一个短正合列:

$$ 0 \rightarrow Q \rightar

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值