代数群引论:B.2 环上的fppf层
1.背景介绍
代数几何是一门研究代数方程和代数变换的数学分支。在代数几何中,环(ring)扮演着基础的角色。环是一种代数结构,具有两种代数运算:加法和乘法,满足结合律、交换律和分配律等一系列代数公理。环上的层(sheaf)是一种将代数结构与拓扑空间联系起来的重要工具。
fppf层(faithfully flat and finitely presented sheaf)是环上一种特殊的层,具有一些良好的代数几何性质。它广泛应用于代数几何、代数拓扑和代数数论等数学领域。本文将深入探讨fppf层在环上的定义、性质及应用。
2.核心概念与联系
2.1 层(Sheaf)的概念
层是一种将代数结构与拓扑空间联系起来的数学对象。更精确地说,给定一个拓扑空间 $X$ 和一个值域 $\mathcal{A}$ (通常是环),一个 $\mathcal{A}$ 上的层 $\mathcal{F}$ 是一个赋值,将 $X$ 的每个开集 $U$ 与一个 $\mathcal{A}$-模 $\mathcal{F}(U)$ 相关联,并满足一些条件。
2.2 fppf层的定义
对于一个环 $A$,称一个 $A$-模 $M$ 是有限展示的(finitely presented),如果存在一个有限生成的投射 $A$-模 $P$ 和一个有限生成的平坦 $A$-模 $Q$,使得存在一个短正合列:
$$ 0 \rightarrow Q \rightar