一切皆是映射:AI Q-learning国际研究前沿速览
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:Q-learning, 强化学习,智能体,映射,策略学习
1. 背景介绍
1.1 问题的由来
随着人工智能技术的快速发展,强化学习(Reinforcement Learning,RL)作为机器学习的一个重要分支,受到了广泛关注。Q-learning作为一种基于值函数的强化学习算法,因其简单、高效而备受青睐。然而,Q-learning在处理高维、非平稳环境以及连续动作空间时,往往面临着巨大的挑战。如何提高Q-learning算法的适应性和泛化能力,成为当前强化学习领域的研究热点。
1.2 研究现状
近年来,国际学者在Q-learning领域取得了丰硕的研究成果,主要集中在以下几个方面:
- 探索与利用的平衡:如何平衡探索和利用,使智能体能够在未知环境中快速学习到有效的策略。
- 样本效率:如何提高学习过程中的样本效率,减少学习时间。
- 连续动作空间:如何将Q-learning算法扩展到连续动作空间,实现连续动作的智能体控制。
- 多智能体学习:如何将Q-learning算法应用于多智能体协同学习场景。 </