无监督学习 (Unsupervised Learning) 原理与代码实例讲解

无监督学习 (Unsupervised Learning) 原理与代码实例讲解

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

关键词:无监督学习,聚类,降维,生成模型,图神经网络

1. 背景介绍

1.1 问题的由来

在人工智能和机器学习领域,监督学习和无监督学习是两种主要的机器学习范式。监督学习依赖于标注数据进行训练,而无监督学习则从无标注的数据中寻找隐藏的结构和模式。无监督学习在数据挖掘、自然语言处理、推荐系统等领域有着广泛的应用。

1.2 研究现状

近年来,随着大数据和深度学习的兴起,无监督学习的研究取得了显著的进展。聚类、降维、生成模型和图神经网络等技术在无监督学习中的应用越来越广泛。

1.3 研究意义

无监督学习对于发现数据中的隐藏模式、揭示数据结构具有重要意义。通过无监督学习,我们可以更好地理解数据的内在规律,为后续的监督学习和其他数据分析任务提供有力支持。

1.4 本文结构

本文将详细介绍无监督学习的原理,包括核心概念、算法原理、数学模型、代码实例等,并探讨其应用场景和未来发展趋势。

2. 核心概念与联系

无监督学习主要包括以下几种类型:

  1. 聚类:将数据分
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值