无监督学习 (Unsupervised Learning) 原理与代码实例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:无监督学习,聚类,降维,生成模型,图神经网络
1. 背景介绍
1.1 问题的由来
在人工智能和机器学习领域,监督学习和无监督学习是两种主要的机器学习范式。监督学习依赖于标注数据进行训练,而无监督学习则从无标注的数据中寻找隐藏的结构和模式。无监督学习在数据挖掘、自然语言处理、推荐系统等领域有着广泛的应用。
1.2 研究现状
近年来,随着大数据和深度学习的兴起,无监督学习的研究取得了显著的进展。聚类、降维、生成模型和图神经网络等技术在无监督学习中的应用越来越广泛。
1.3 研究意义
无监督学习对于发现数据中的隐藏模式、揭示数据结构具有重要意义。通过无监督学习,我们可以更好地理解数据的内在规律,为后续的监督学习和其他数据分析任务提供有力支持。
1.4 本文结构
本文将详细介绍无监督学习的原理,包括核心概念、算法原理、数学模型、代码实例等,并探讨其应用场景和未来发展趋势。
2. 核心概念与联系
无监督学习主要包括以下几种类型:
- 聚类:将数据分