使用MedBIoT构建有效的物联网僵尸网络检测系统
1. 物联网僵尸网络检测研究现状
在计算机网络领域,僵尸网络检测一直是研究热点,已有大量科学文献探讨该现象,并且有许多公开数据集可用于实验。然而,近年来兴起的物联网僵尸网络现象尚未得到足够关注,可用的数据源明显匮乏。
目前,已有一些不同的检测算法被提出:
- 有研究使用卷积神经网络和二进制可视化技术,结合网络流量进行检测,该方法能快速检测零日恶意软件。
- 还有研究将基于双向长短期记忆的循环神经网络这一文本识别深度学习算法应用于Mirai僵尸网络攻击检测,取得了显著成效。
- 也有研究利用不同网络特征构建并评估传统机器学习算法(如k - 最近邻、支持向量机、决策树、随机森林和人工神经网络)对Mirai DDoS攻击的检测能力。
- 另外,传统的基于无监督异常的学习算法通过应用不同的特征选择技术,使用减少的特征集进行僵尸网络检测。
- 还有研究进行了降维和区分性特征分析,以构建快速、高效且可解释的模型,以及评估混合特征选择方法来诱导更快、更高效的物联网僵尸网络检测方法。
1.1 物联网僵尸网络攻击异常检测数据集
以下是一些公开发布的用于构建和测试物联网基于异常的入侵检测系统的数据集:
| 名称 | 僵尸网络 | 设备数量 | 设备类型 | 真实或模拟 | 网络规模 | 数据格式 | 日期 |
| ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- |
| N - Baiot | Mirai, BashLite | 9 | 门铃、网络摄像头、恒温器、婴儿监视器、安全摄像头 |