Learn about the optimization loop 了解优化循环
Optimizing Model Parameters 优化模型参数
现在我们有了模型和数据,是时候通过优化数据上的参数来训练、验证和测试我们的模型了。训练模型是一个迭代过程;在每次迭代中,模型都会对输出进行猜测,计算其猜测中的误差(损失),收集相对于其参数的导数的误差(如我们在上一节中看到的),并使用梯度下降优化这些参数。有关此过程的更详细演练,请观看3Blue1Brown 的反向传播有关视频。
Prerequisite Code 前置代码
%matplotlib inline
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda
training_data = datasets.FashionMNIST(
root = "data",
train = True,
download = True,
transform = ToTensor()
)
test_data = datasets.FashionMNIST(
root = "data",
train = False,
download = True,
transform = ToTensor()
)
train_dataloader = DataLoader(training_data, batch_size = 64)
test_dataloader = DataLoader(test_data, batch_size = 64)
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28,