sklearn.feature_extraction.text.CountVectorizer 参数说明

这篇博客主要介绍了sklearn.feature_extraction.text.CountVectorizer的用法和参数,包括输入类型、编码解码、停用词处理、n-gram范围等。通过示例展示了如何使用该工具进行文本分词和转换为计数矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本人小白一枚,现在正在做分词和文本挖掘的事情,翻译了下sklearn.feature_extraction.text.CountVectorizer,有错误之处还请大佬指出

 

将文本文档集合转换为计数矩阵此实现使用scipy.sparse.csr_matrix生成计数的稀疏表示。如果您不提供先验词典并且不使用执行某种特征选择的分析器,则功能的数量将等于通过分析数据找到的词汇量。

用法:

sklearn.feature_extraction.text(input=’content’,encoding=’utf8’decode_error=’strict’,strip_accents=Nonelowercase=Truepreprocessor=Nonetokenizer=Nonestop_words=Nonetoken_pattern=’(?u)\b\w\w+\b’ngram_range=(11)analyzer=’word’max_df=1.0min_df=1max_features=None

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值