图像跟踪与视频水印技术:EEFNC与新型水印方法解析
1. EEFNC图像跟踪算法
在复杂和遮挡图像的跟踪领域,Edge Enhanced Fragment Based Normalized Correlation(EEFNC)算法应运而生,旨在解决Edge Enhanced Normalized Correlation(EENC)方法在强杂波和缓慢遮挡情况下无法可靠处理的问题。
1.1 实验对比
以F - 16起飞序列图像为例进行实验。当使用EENC跟踪器时,若从初始帧选择模板并开始跟踪,杂波(如小棚屋的白色屋顶)会干扰跟踪,导致跟踪丢失。而使用EEFNC跟踪器,在初始帧相同位置选择相同大小的模板开始跟踪,飞机能在整个图像序列中被成功跟踪。同时,EEFNC的后回归分析结果也优于EENC。
跟踪器 | 复杂环境跟踪效果 | 后回归分析结果 |
---|---|---|
EENC | 易受杂波干扰,跟踪丢失 | 相对较差 |
EEFNC | 成功跟踪目标 | 更优 |
1.2 计算速度
EENC在模板大小通常为25×25像素时,工作速度约为75 fps。而EEFNC在使用金字塔搜索技术进行搜索直至两个粗略级别时,相同模板大小下速度约为25 fps。虽