可处理的概率描述逻辑程序解读
1. 总良基语义的优势
总良基语义在概率描述逻辑程序(probabilistic dl - programs)中具有显著优势。与之前的良基语义相比,它能为更多类型的概率查询定义紧答案,而之前的良基语义仅能为相当受限的一类概率查询定义紧答案。并且,总良基语义适用于所有概率dl - programs,而答案集语义仅适用于一致的概率dl - programs。
总良基语义还有其他良好的语义特性:
- 若之前良基语义下的紧答案有定义,那么总良基语义下的紧答案与之重合。
- 对于文字查询,若答案集语义下的紧答案有定义,总良基语义下的紧答案与之重合。
此外,还提供了一个用于总良基语义下概率dl - programs紧查询处理的随时算法,并精确刻画了其随时误差。同时,总良基语义下的紧查询处理在数据复杂度上可在多项式时间内完成,在组合复杂度上是EXP完全的。概率dl - programs还可应用于语义网的概率数据集成,能处理概率不确定性和不一致性,并且可以实现不同类型的概率数据集成。
2. 描述逻辑(Description Logics)
概率dl - programs假设底层描述逻辑允许可判定的合取查询处理,并且在数据复杂度上能以多项式时间进行合取查询处理。这里使用DL - Lite,不过相关的易处理性和复杂度结果也适用于DL - Lite的变体。
2.1 语法(Syntax)
- 基本概念和公理 :
- 假设存在两两不相交的集合:原子概念集合$A$、(原子)角色集合$R$和个体集合