线代——求逆矩阵的快捷方法

本文介绍了矩阵求逆的两种基本方法,并详细阐述了二阶矩阵和分块矩阵的逆矩阵计算规则,包括主对角和副对角的分块矩阵,以及不同形状的三角形分块矩阵的逆运算。这些规则适用于特殊矩阵的快速求逆。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

通常,求逆矩阵有两种方法:
方法一:
在这里插入图片描述
方法二:

在这里插入图片描述
但是,对于特殊矩阵,如:

1、二阶矩阵

A=[abcd]A = \begin{bmatrix} a & b\\ c & d \end{bmatrix}A=[acbd],其逆矩阵 A−1=1ad−bc[d−b−ca]A^{-1}=\frac{1}{ad-bc}\begin{bmatrix} d & -b\\ -c & a \end{bmatrix}A1=adbc1[dcba]

2、分块矩阵


分块矩阵在主对角位置,直接对分块矩阵取逆矩阵:

A=[XY]A = \begin{bmatrix} X & \\ & Y \end{bmatrix}A=[XY],其逆矩阵 A−1=[X−1Y−1]A^{-1}=\begin{bmatrix} X^{-1} & \\ & Y^{-1} \end{bmatrix}A1=[X1Y1]


分块矩阵在副对角位置,副对调,再取逆

A=[XY]A = \begin{bmatrix} & X \\ Y & \end{bmatrix}A=[YX],其逆矩阵 A−1=[Y−1X−1]A^{-1}=\begin{bmatrix} & Y^{-1}\\ X^{-1} & \end{bmatrix}A1=[X1Y1]


分块矩阵为右上三角形状,首先主对角直接取逆,然后再对右上角子矩阵左乘其行,右乘其列,再添符号

A=[XWY]A = \begin{bmatrix} X & W\\ & Y \end{bmatrix}A=[XWY],其逆矩阵 A−1=[X−1−X−1WY−1Y−1]A^{-1}=\begin{bmatrix} X^{-1} & -X^{-1}WY^{-1}\\ & Y^{-1} \end{bmatrix}A1=[X1X1WY1Y1]

同理,对于左下三角形状,首先主对角直接取逆,然后再对左下角子矩阵左乘其行,右乘其列,再添符号

A=[XWY]A = \begin{bmatrix} X & \\ W & Y \end{bmatrix}A=[XWY],其逆矩阵 A−1=[X−1−Y−1WX−1Y−1]A^{-1}=\begin{bmatrix} X^{-1} & \\ -Y^{-1}WX^{-1} & Y^{-1} \end{bmatrix}A1=[X1Y1WX1Y1]

它们相同之处,都是分块三角矩阵占据主对角位置。


分块矩阵为左上三角形状,首先副对调,再取逆,然后将左上角子矩阵换到右下角,最后再对该子矩阵左乘其行,右乘其列,再添符号

A=[WXY]A = \begin{bmatrix} W & X \\ Y & \end{bmatrix}A=[WYX],其逆矩阵 A−1=[Y−1X−1−X−1WY−1]A^{-1}=\begin{bmatrix} & Y^{-1}\\ X^{-1} & -X^{-1}WY^{-1} \end{bmatrix}A1=[X1Y1X1WY1]

同理,对于右下三角形状,首先副对调,再取逆,然后将右下角子矩阵换到左上角,最后再对该子矩阵左乘其行,右乘其列,再添符号

A=[XYW]A = \begin{bmatrix} & X \\ Y & W \end{bmatrix}A=[YXW],其逆矩阵 A−1=[−Y−1WX−1Y−1X−1]A^{-1}=\begin{bmatrix} -Y^{-1}WX^{-1} & Y^{-1}\\ X^{-1} & \end{bmatrix}A1=[Y1WX1X1Y1]

它们相同之处,都是分块三角矩阵占据副对角位置。


综上,对于形状是上、下三角的分块矩阵求逆,如果分块子矩阵占据主对角位置,不需要对调位置;如果分块子矩阵占据副对角位置,都需要对调位置。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值