每日一题 —— 882. 细分图中的可到达节点

探讨在给定的无向图中,通过细分边为节点链,计算从节点0出发,在限定步数内可达的节点总数。介绍两种算法实现:广度优先搜索(BFS)和Dijkstra算法,并对比其优劣。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

882. 细分图中的可到达节点

给你一个无向图(原始图),图中有 n 个节点,编号从 0n - 1 。你决定将图中的每条边 细分 为一条节点链,每条边之间的新节点数各不相同。

图用由边组成的二维数组 edgesedgesedges 表示,其中 edges[i]=[ui,vi,cnti]edges[i] = [u_i, v_i, cnt_i]edges[i]=[ui,vi,cnti] 表示原始图中节点 $u_i $和 viv_ivi 之间存在一条边,cnticnt_icnti 是将边 细分 后的新节点总数。注意,cnti==0cnt_i == 0cnti==0 表示边不可细分。

细分[ui,vi][u_i, v_i][ui,vi] ,需要将其替换为 (cnti+1)(cnt_i + 1)(cnti+1) 条新边,和 cnticnt_icnti 个新节点。新节点为 x1,x2,...,xcntix_1, x_2, ..., x_{cnt_i}x1,x2,...,xcnti ,新边为 [ui,x1],[x1,x2],[x2,x3],...,[xcnti−1,xcnti],[xcnti,vi][u_i, x_1], [x_1, x_2], [x_2, x_3], ..., [x_{cnt_i-1}, x_{cnt_i}], [x_{cnti}, v_i][ui,x1],[x1,x2],[x2,x3],...,[xcnti1,xcnti],[xcnti,vi]

现在得到一个 新的细分图 ,请你计算从节点 0 出发,可以到达多少个节点?如果节点间距离是 maxMoves 或更少,则视为 可以到达

给你原始图和 maxMoves ,返回 新的细分图 中从节点 0 出发 可到达的节点数

示例

image-20221205143618111

输入:edges = [[0,1,10],[0,2,1],[1,2,2]], maxMoves = 6, n = 3
输出:13
解释:边的细分情况如上图所示。
可以到达的节点已经用黄色标注出来。

提示

  • 0 <= edges.length <= min(n * (n - 1) / 2, 10^4)
  • edges[i].length == 3
  • 0<=ui<vi<n0 <= u_i < v_i < n0<=ui<vi<n
  • 图中 不存在平行边
  • 0<=cnti<=1040 <= cnt_i <= 10^40<=cnti<=104
  • 0<=maxMoves<=1090 <= maxMoves <= 10^90<=maxMoves<=109
  • 1 <= n <= 3000

思路

在细分图上操作

首先,考虑能不能暴力做。暴力做,就是先对细分后的图,进行建图,建完图后,原始节点细分后产生的新节点便没有什么区别。求解从0经过最多maxMoves可到达的节点数,那么只需要用BFS,对每个节点,求一个最短距离(距节点0的距离),然后统计那些距离小于等于maxMoves的节点,进行累加计数即可。思路非常简单。但是看一眼数据范围,发现边最多有10410^4104,每条边上的细分节点数,最多有10410^4104,那么细分节点的总数最大有 10810^8108,加上原始节点的3000。细分后的图中的节点数量,会达到10810^8108级别,此时用BFS进行遍历,会访问每个节点一次,则时间复杂度会达到 10810^8108 级别,是会超时的。所以暴力做法不行。

那么只能在原始图上进行操作。

在原始图上操作

我一开始的思路很naive,就是遍历。(其实从上面暴力思路中能够看出,关键在于求解出每个点到节点0最短距离,但我一开始的思路只是遍历,还是用DFS遍历的)

具体思路是:从0开始,对原始图进行遍历,对已经走过的点打上标记,以及在访问某个节点时,需要带上剩余的可移动步数。对于边上(假设某条边的2个点为ab,那么用[a, b]来表示这条边)的细分点,用一个二维数组表示一下,cnt[a][b]表示从ab走,最多能经过多少个细分点,cnt[b][a]类似。由于从0到某个节点x可能有多条路径,我们当然要选最短的一个,这样的话,当走到x时,剩余的可移动步数才会最大。所以其实,就算是通过遍历,也应当使用BFS,而不是DFS,因为需要求解最短距离。而BFS才具有最短路的特性。

下面是我用BFS提交通过的代码

// C++  540ms
const int N = 3010, M = 2e4 + 10;
typedef pair<int, int> PII;
class Solution {
public:

    int h[N], e[M], ne[M], idx; // 图的邻接表表示

    int cnt[N][N]; // 某个边上的节点数

    int hasMoved[N][N]; // hasMoved[a][b] 表示边[a, b]上, 从a到b方向, 已经访问过的节点数量

    int maxRemain[N]; // maxRemain[a] 表示访问到节点a时,最大的剩余移动步数

    bool st[N]; // 是否已计数过该节点

    void add(int a, int b) {
        e[idx] = b;
        ne[idx] = h[a];
        h[a] = idx++;
    }


    int reachableNodes(vector<vector<int>>& edges, int maxMoves, int n) {
        memset(h, -1, sizeof h);
        memset(maxRemain, -1, sizeof maxRemain);
        // 建图
        for (auto& e : edges) {
            int a = e[0], b = e[1], c = e[2];
            add(a, b);
            add(b, a);
            cnt[a][b] = cnt[b][a] = c;
        }

        int ans = 0;
        queue<PII> q;
        q.push({0, maxMoves});
        maxRemain[0] = maxMoves;

        while (q.size()) {
            PII p = q.front();
            q.pop();
            int x = p.first, remainMoves = p.second;
            if (maxRemain[x] > remainMoves) continue; // 该节点在队列中有更大的remain, 则跳过该次的计算
            if (!st[x]) {
                ans++;
                st[x] = true;
                //还未计数过该原始节点时, 进行计数 
            }
            // 遍历邻接点
            for (int i = h[x]; i != -1; i = ne[i]) {
                int u = e[i];
                if (remainMoves >= cnt[x][u] + 1) {
                    // 能走过去, 则需要加上整条边上的细分节点数
                    // 但是由于这条边可能之前已经被走过了, 所以需要减掉一些已经走过的节点
                    // 这条线上, 已经走过的节点数, 从左从右都要计算
                    int hasMoveCnt = min(cnt[x][u], hasMoved[x][u] + hasMoved[u][x]);
                    ans += cnt[x][u] - hasMoveCnt; // 答案需要加上那些没走过的节点
                    hasMoved[x][u] = hasMoved[u][x] = cnt[x][u]; // 整条线都被走过, 更新走过的节点数
                    int newRemain = remainMoves - cnt[x][u] - 1; // 走过去后, 剩余的步数
                    if (newRemain > maxRemain[u]) {
                        // 如果当前节点的剩余步数比较大, 则入队列
                        // 当第一次遇到newRemain = 0时, 也需要将u入队, 所以需要初始化maxRemain为-1
                        maxRemain[u] = newRemain;
                        q.push({u, newRemain});
                    }
                } else {
                    // 无法走过去, 则看一下最多能走多少
                    // 因为是双向的, 要减掉重叠部分
                    // 首先看一下对侧走过来的, 走过了多少个节点
                    // 剩余能走的节点数, 要么是remainMoves要么是cnt[x][u] - hasMoved[u][x]
                    int canMaxMoves = min(remainMoves, cnt[x][u] - hasMoved[u][x]);
                    ans += max(0, canMaxMoves - hasMoved[x][u]); // 本侧能走的节点减去本侧已走的节点, 就是新走过的节点
                    hasMoved[x][u] = max(hasMoved[x][u], remainMoves); // 更新本侧走过的节点
                }
            }
        }

        return ans;
    }
};

其实从上面的代码,就能看出,此题其实就是需要求解一个最短路,我们其实可以将每条边上的细分点的个数,看成是这条边的权重。上述BFS在求最短距离时(上面求的是最大剩余步数,其实就是最短距离),对于某一个节点,可能会被多次访问,多次入队。所以效率其实比较低。

只要看出了这道题需要求最短路,并且有意识的把边上的细分点的个数,看成是边的权重,那么很容易就应该想到最短路的经典算法 —— Dijkstra。

因为此题边权都是正数,所以理应用Dijkstra。先用Dijkstra求出0点到每个点的最短距离,然后进行统计

  • 先统计原始图中的点,遍历0n - 1所有点,当点的距离小于等于maxMoves时进行计数
  • 再统计细分产生的新的点,遍历所有边,查看左右两个的点的最短距离,并计算这条边上的点最多有多少个能被访问到
typedef pair<int, int> PII;
class Solution {
public:

    int reachableNodes(vector<vector<int>>& edges, int maxMoves, int n) {
        int INF = 1e9;
        vector<int> d(n, INF); // 0号点到所有点的最短距离
        vector<bool> st(n);
        vector<vector<PII>> g(n); // 图的邻接表表示, 存邻接点以及边权
        for (auto& e : edges) {
            int a = e[0], b = e[1], w = e[2];
            g[a].push_back({b, w + 1}); // 边权为节点数加1
            g[b].push_back({a, w + 1});
        }
        // dijkstra
        // 小根堆优化
        priority_queue<PII, vector<PII>, greater<PII>> heap;
        d[0] = 0;
        heap.push({0, 0});
        while (heap.size()) {
            PII p = heap.top();
            heap.pop();
            int node = p.second;
            if (st[node]) continue; // 这个点的最短距离已经被确定了, 跳过
            st[node] = true; // 该点的最短距离已经确定
            // 更新出边
            for(auto& t : g[node]) {
                int u = t.first, w = t.second;
                if (!st[u] && d[u] > d[node] + w) {
                    d[u] = d[node] + w;
                    heap.push({d[u], u});
                }
            }
        }
        int ans = 0;
        for (int i = 0; i < n; i++) {
            if (d[i] <= maxMoves) ans++;
        }
        for (auto& e : edges) {
            int a = e[0], b = e[1], c = e[2];
            int left = max(maxMoves - d[a], 0); // a往b走最多能走的节点数
            int right = max(maxMoves - d[b], 0); // b往a走最多能走的节点数
            ans += min(left + right, c);
        }
        return ans;
    }
};

另外注意:朴素版的Dijkstra的时间复杂度为 O(n2)O(n^2)O(n2),堆优化版的Dijkstra的复杂度为 O(mlogn)O(mlogn)O(mlogn)

(其中nnn是节点数,mmm是边数)

当图是稀疏图时(边数较少),适合用堆优化版的Dijkstra

当图是稠密图时(边数非常多,mmm 基本达到了 n2n^2n2 级别),适合用朴素版的Dijkstra

朴素版Dijkstra,建图采用邻接矩阵。一共需要nnn次循环,每次确定一个点的最短距离。在每轮循环内,首先需要遍历 nnn 个点,从未确定最短距离的点中,找到距离最短的点,随后再更新这个点的所有出边的距离。

  • 外层循环为 nnn
  • 内层循环每次
    • 选出当前的最短距离的点(需要遍历所有点,计算量为 nnn
    • 更新这个点的全部出边(由于是邻接矩阵表示,实际计算量也是 nnn

所以朴素版Dijkstra复杂度为 O(n2)O(n^2)O(n2)

堆优化版Dijkstra,建图采用邻接表。一共需要 nnn 次循环,每次确定一个点的最短距离。在每轮循环内,可以用 O(1)O(1)O(1) 的开销获取当前距离最短的点,但是需要更新这个点的所有出边的点的距离。

  • 外层循环为 nnn
  • 内层循环
    • 每次用 O(1)O(1)O(1) 选出最短距离的点,但是pop完堆顶后还要调整堆,时间复杂度为 O(logn)O(logn)O(logn)
    • 需要更新这个点的所有出边的点的距离(需要插入到堆中,堆会进行调整)

总的来说,需要从堆中取 nnn 次堆顶。而每走一条边,就可能会更新一个点的距离,整个Dijkstra会访问每条边一次。

我们可以想象为,先把所有点插入到堆中,然后随着算法的进行,每走过一条边,就会更新一个点的距离,这个点在堆中的更新,消耗的时间为 O(logn)O(logn)O(logn),而一共有 mmm 条边,则需要更新 mmm次,则更新的时间复杂度为 O(mlogn)O(mlogn)O(mlogn),而每次pop出堆顶后,调整堆需要 O(logn)O(logn)O(logn),而一共要pop nnn次,所以这部分的复杂度为 O(nlogn)O(nlogn)O(nlogn),那么总的复杂度是 O((n+m)logn)O((n+m)logn)O((n+m)logn)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值