假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
提示: 1 <= n <= 45
观察规律可得 到达第 n 阶的方法数 = 到达第 n-1 阶的方法数 + 到达第 n-2 阶的方法数
比如n=5 到达第 5 阶的方法数 = 到达第 4 阶的方法数 + 到达第 3 阶的方法数
代码示例:
#include <iostream>
using namespace std;
class Solution {
public:
int climbStairs(int n) {
// 处理基本情况
if (n <= 2) {
return n;
}
// 优化空间的动态规划
// a代表n-2阶的方法数,b代表n-1阶的方法数
int a = 1, b = 2;
int result = 0;
// 从3阶开始计算到n阶
for (int i = 3; i <= n; ++i) {
result = a + b; // 当前阶数的方法数是前两阶之和
a = b; // 滚动更新
b = result;
}
return result;
}
};