【Colab代码调试】End-to-end reproducible AI pipelines in radiology using the cloud


第一在Colab上运行代码: https://colab.research.google.com/github/ImagingDataCommons/idc-radiomics-reproducibility/blob/main/notebooks/hosny_processing_example.ipynb#scrollTo=1ZXwYFoEuRM6

报错MessageError: Error: credential propagation was unsuccessful

解决办法

from google.colab import auth
auth.authenticate_user()

报错:MessageError: Error: credential propagation was unsuccessful
解决办法:将google Colaboratory Runtimes可以访问的权限都勾选上,再运行就不会报错了
参考链接:https://github.com/googlecolab/colabtools/issues/4343
在这里插入图片描述
翻译:我在尝试只允许我认为可能需要的权限时遇到了同样的问题。一旦我点击了启用全部选项,它就起作用了。

原理

from google.colab import auth
auth.authenticate_user()

这段代码是用于在 Google Colaboratory(Colab)环境中进行用户身份验证的。Colab 是一个免费的 Jupyter 笔记本环境,由 Google 提供,允许用户编写和执行代码,同时利用 Google Cloud Platform 的计算资源。
from google.colab import auth:这行代码从 Colab 的库中导入了 auth 模块。auth 模块包含了用于处理身份验证和授权的功能。
auth.authenticate_user():这行代码调用 auth 模块中的 authenticate_user() 函数。这个函数会启动一个身份验证流程,通常是通过弹出一个窗口来提示用户登录其 Google 账户。用户需要在这个弹出的窗口中输入他们的 Google 账户凭据。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

当用户成功登录后,Colab 笔记本将获得授权,可以访问那些需要用户权限的 Google 服务,比如 Google Drive。这样,用户就可以直接从 Colab 笔记本中读写 Google Drive 上的文件。

在执行需要访问用户个人数据或服务的代码之前,通常需要先执行这段身份验证代码。例如,如果你的 Colab 笔记本需要从用户的 Google Drive 中读取数据文件,或者需要将结果保存到用户的 Drive 上,那么在进行这些操作之前,你需要确保已经通过 auth.authenticate_user() 进行了身份验证。

找不到GPU

# chec
### DETR 模型概述 DETR (Detection Transformer) 是一种基于变压器架构的目标检测方法,它通过将目标检测视为集合预测问题来简化传统的两阶段管道[^3]。该模型的核心思想在于使用编码器-解码器结构,其中自注意力机制能够显式建模序列中所有成对交互关系,这使得其特别适合处理诸如消除重复预测之类的集合预测约束。 #### 编码器-解码器架构 DETR 使用了一种基于变压器的编码器-解码器架构。输入图像被划分为固定数量的 patches,并传递到 CNN 提取特征图。随后,这些特征图被展平并送入变压器编码器部分进行全局上下文建模。接着,在解码器端引入一组可学习的位置嵌入(称为查询),用于表示潜在的对象位置和属性。最终,解码器输出一系列边界框坐标以及对应的类别标签。 以下是实现 DETR 的基本代码框架: ```python import torch from torchvision.models.detection import detr_resnet50 # 加载预训练的 DETR 模型 model = detr_resnet50(pretrained=True) # 设置为评估模式 model.eval() # 输入张量形状 (batch_size, channels, height, width) input_tensor = torch.rand(1, 3, 800, 800) # 进行推理 outputs = model(input_tensor) print(outputs) ``` 此代码片段展示了如何加载一个预先训练好的 DETR 模型,并对其进行简单的前向传播操作以获取预测结果。 #### 训练流程优化 为了进一步提升性能,研究者们还提出了一些改进措施。例如,在小样本场景下,可以通过迁移学习技术增强泛化能力;或者设计专门针对稀有类别的损失函数来缓解数据不平衡现象[^4]。 ### 应用实例:全景分割 除了常规的目标检测任务外,DETR 同样可以扩展至更复杂的视觉理解领域——比如全景分割。具体而言,只需稍作调整即可让同一套网络同时完成语义分割与实例分割两项子任务。下面给出一段展示如何利用官方 Colab 笔记本运行 DEMO 的链接说明[^1]: [Panoptic Colab Notebook](https://github.com/facebookresearch/detr/blob/main/notebooks/panoptic.ipynb).
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

verse_armour

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值