【笔试】C++实现计算在网格中从原点到特定点的最短路径长度(BFS)

本文介绍了一种使用广度优先搜索(BFS)算法解决二维迷宫最短路径问题的方法。通过定义方向数组来控制搜索方向,并利用队列保存待搜索的位置,最终找到从起点到终点的最短路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

[[1,1,0,1],
 [1,0,1,0],
 [1,1,1,1],
 [1,0,1,1]]
 
 1 表示可以经过某个位置,0表示不可以经过,求解从 (0, 0) 位置到 (tr, tc) 位置的最短路径长度。
 求解从(0, 0) 位置到 (tr, tc) 位置的最短路径长度。

解题思路

  1. 每个点需要保存x坐标,y坐标,可以用pair
  2. 由于bfs每次只将距离加一,所以当位置抵达终点时,此时的距离就是最短路径了。

C++实现

#include <iostream>
#include <vector>
#include <queue>
using namespace std;

int minPathLength(vector<vector<int>> grids, int tr, int tc);

int main()
{
	vector<vector<int>> grids = { {1,1,0,1},{1,0,1,0},{1,1,1,1},{1,0,1,1} };
	int pathLen = sol.minPathLength(grids, 3,3);
	return 0;
}

int minPathLength(vector<vector<int>> grids, int tr, int tc)
{
	if (grids.empty())
		return -1;

	//定义方向:右移、左移、上移、下移
	int directions[4][2] = { {1,0},{-1,0},{0,1},{0,-1} };
	int m = grids.size(), n = grids[0].size();//行列数

	//queue存储接下来要遍历的点
	queue<pair<int, int>> queue_point;
	//首先将0,0点入队列
	queue_point.push(pair<int, int>(0, 0));

	int pathLength = 0;

	while (!queue_point.empty())
	{
		//走一步可以到达的点有多少个
		int size = queue_point.size();
		//每一次循环,pathLength会加一
		pathLength++;
		//执行size次循环
		while (size-- > 0)
		{
			pair<int, int> cur = queue_point.front();//返回队首元素
			queue_point.pop();//弹出队首元素
			for (auto d : directions) //试探所有的方向
			{
				int nr = cur.first + d[0], nc = cur.second + d[1];//下一行、列
				pair<int, int> next(nr, nc);
				//判断下一步是否越界
				if (next.first < 0 || next.second < 0
					||next.first >= m || next.second >= n)
				{
					continue;
				}
				//判断点的值是否为0,为0代表不可以走
				if(grids[next.first][next.second] == 0)
					continue;

				grids[next.first][next.second] = 0;//标记
				if (next.first == tr && next.second == tc)
					return pathLength;
				queue_point.push(next);
			}
		}


	}
	return -1;
}

### C++ 实现 BFS 广度优先搜索解决单元格最短路径问题 #### 算法概述 广度优先搜索(BFS)是一种基于队列的图遍历算法,适用于求解无权图上的最短路径问题。通过逐层扩展节的方式,能够确保首次到达目标节时所经过的路径是最短的。 在给定的 `n x n` 二进制矩阵中,可以通过 BFS计算从左上角 `(0, 0)` 到右下角 `(n-1, n-1)` 的最短畅通路径长度[^2]。为了实现这一功能,可以采用队列存储待访问的坐标,并记录每个的距离信息。 --- #### 算法实现步骤说明 以下是使用 C++ 编写的一个典型 BFS 解决方案: ```cpp #include <iostream> #include <queue> #include <vector> using namespace std; // 定义方向向量 (8个方向) const int directions[8][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1} }; int shortestPathBinaryMatrix(vector<vector<int>>& grid) { int n = grid.size(); // 如果起始或终不可达,直接返回 -1 if (grid[0][0] != 0 || grid[n - 1][n - 1] != 0) return -1; vector<vector<bool>> visited(n, vector<bool>(n, false)); // 访问标记数组 queue<pair<int, int>> q; // 队列存储当前坐标 q.push({0, 0}); // 起入队 visited[0][0] = true; int pathLength = 1; // 初始化路径长度为1 while (!q.empty()) { int size = q.size(); // 当前层次的节数 for (int i = 0; i < size; ++i) { pair<int, int> current = q.front(); q.pop(); // 若已到达终,返回路径长度 if (current.first == n - 1 && current.second == n - 1) return pathLength; // 尝试八个方向移动 for (auto& dir : directions) { int newRow = current.first + dir[0]; int newCol = current.second + dir[1]; // 检查新位置是否合法且未被访问过 if (newRow >= 0 && newRow < n && newCol >= 0 && newCol < n && !visited[newRow][newCol] && grid[newRow][newCol] == 0) { q.push({newRow, newCol}); visited[newRow][newCol] = true; } } } pathLength++; // 增加一层后的路径长度 } return -1; // 如果无法到达终,返回 -1 } int main() { vector<vector<int>> grid = { {0, 1, 0, 0, 0}, {1, 1, 0, 1, 0}, {0, 0, 0, 1, 0}, {0, 1, 1, 1, 0}, {0, 0, 0, 0, 0} }; cout << "Shortest Path Length: " << shortestPathBinaryMatrix(grid) << endl; return 0; } ``` --- #### 关键解释 1. **方向向量**:定义了一个二维数组 `directions` 表示八个可能的方向,便于处理八连通的情况[^4]。 2. **边界条件检查**:在每次尝试新的坐标之前,需验证其合法性以及是否已经访问过。 3. **队列操作**:利用标准库中的 `std::queue` 存储待探索的节,按照 FIFO(先进先出)原则依次处理。 4. **终止条件**:当发现某个节正好位于终 `(n-1, n-1)` 时立即返回对应的路径长度;如果整个队列耗尽仍未找到有效路径,则返回 `-1`。 --- #### 时间与空间复杂度分析 - **时间复杂度**: O(),其中 N 是网格的一边大小。因为最多会访问每一个单元一次。 - **空间复杂度**: 同样也是 O(),主要用于保存布尔型访问状态表和队列内的元素。 此方法不仅高效而且易于理解,非常适合初学者学习如何运用 BFS 处理实际编程挑战[^3]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值