自然语言处理:第七十章 Langchain的长文本总结处理方案

本人项目地址大全:Victor94-king/NLP__ManVictor: CSDN of ManVictor


写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!

写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!

写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!


引言

随着大型语言模型(LLM)技术的飞速发展,模型支持的token数量不断增加,从最初的4k、8k扩展到现在的16k、32k,使得我们能够处理更长的文本内容。然而,这一进步也带来了新的挑战:

  • 机器资源不足:尽管模型能够处理更长的文本,但显卡资源可能成为限制因素,导致无法一次性处理全部样本。
  • 理解能力不足:即使资源充足,许多开源模型在理解和总结长文本方面仍存在不足,一次性输入过多token可能导致模型抓不住重点或产生幻觉。

最近在帮人做长文本的QA,一个思路做问题router之后进行判断问题是全局还是局部。如果是全局的话对长文本进行summary再回答。所以这里需要对长本文进行总结,在这里看到langchain有几条处理方式





处理方式

下面都会以代码+解析的形式出现,然后我这边用的Xinference启动的服务,可以参考下。

1. Stuff

这是一种直接的处理长文本的方法,将所有内容一次性输入给LLM。

  • 优点:只需调用一次LLM,上下文完整,便于模型理解全貌。

  • 缺点:对GPU资源和模型理解能力要求高,且存在max_token限制,对于更长的文本仍存在限制。

    在这里插入图片描述

    代码:

    
    from langchain.document_loaders import Docx2txtLoader  # 新增这个导入
    from langchain_openai import ChatOpenAI
    from langchain.prompts import PromptTemplate
    from langchain.chains.llm import LLMChain
    from langchain.chains.combine_documents.stuff import StuffDocumentsChain
    import time
    
    start_time = time.time()  # 记录开始时间
    
    # 导入 docx 文档
    loader = Docx2txtLoader("xxx.docx"
<think>好的,我现在需要帮用户解决如何本地化部署大模型的问题,特别是针对投研机器人、智能客服和智能会议纪要这三个场景。首先,我得理清楚每个场景的具体需求,然后推荐合适的平台或模型。 首先,投研机器人。用户希望本地搭建知识库,根据每日行情推送研报。这里的关键点在于需要处理大量金融数据,实时性要求可能较高,而且需要准确的文档解析和检索能力。可能需要一个能够支持本地知识库、有高效检索功能的平台。Dify可能适合,因为它支持知识库和RAG(检索增强生成),但可能需要结合其他模型,比如金融领域微调过的模型,比如BloombergGPT或者FinBERT,但不确定这些模型是否容易本地部署。另外,数据安全也是考虑因素,必须确保本地化。 然后是智能客服。这个场景需要自然语言处理能力强,能够理解多轮对话,处理常见问题,并且可能涉及多轮交互。模型需要低延迟,支持意图识别和实体抽取。可能需要一个对话专用模型,比如ChatGLM3或者Baichuan,这些模型有较好的中文支持,而且可以在本地部署。平台方面,Dify或者FastChat可能适用,但需要检查是否支持客服场景的定制,比如预设回答模板、多轮对话管理。 智能会议纪要。这需要语音识别(ASR)转换成文本,然后进行摘要和关键信息提取。可能需要结合Whisper这样的语音转文本模型,再加上摘要模型,比如BART或T5的中文版。另外,信息抽取可能需要NER(命名实体识别)模型。平台方面,可能需要一个能够整合多个模型流水线的框架,比如LangChain或者Hugging Face的Transformers库,结合自定义脚本。Dify是否支持这样的流程?或者是否需要其他工具? 接下来,我需要考虑各个平台的特点。Dify确实支持工作流和知识库,适合需要结合外部数据的场景,比如投研机器人和客服的知识库。但对于会议纪要,可能需要更多的自定义处理流程,Dify可能不够灵活,这时候可能需要结合其他工具,比如使用FastAPI自己搭建后端,集成不同的模型。 模型选择方面,开源模型如ChatGLM3-6B、Qwen-7B、Baichuan2-13B都是支持本地部署的,而且对中文友好。对于金融领域,可能需要微调这些模型,使用本地研报数据做继续预训练或者LoRA微调。智能客服可能需要较小的模型,比如ChatGLM3-6B,响应速度快。而会议纪要的摘要可能需要更大的模型,比如Qwen-72B,但硬件资源有限的话可能需要量化版本,比如Qwen-1.8B-Int8。 安全性和合规性方面,所有数据必须留在本地,不能使用第三方API,所以必须确保所选平台和模型都能完全离线运行。Dify的本地版本是否满足?需要确认他们的企业版是否支持完全离线,社区版可能有功能限制。另外,像LangChain这样的框架可以本地运行,但需要自己搭建流水线。 硬件资源也是一个问题。如果用户有GPU服务器,比如A100或者3090,可以部署较大的模型;如果没有,可能需要更小的模型或者使用量化技术。例如,智谱AI的ChatGLM3-6B可以在消费级显卡上运行,而Qwen-1.8B的量化版对资源要求更低。 总结一下,针对三个场景: 1. 投研机器人:Dify平台(知识库+RAG)+ 金融微调模型(如Qwen-7B-Chat-Fin) 2. 智能客服:Dify或FastChat + 对话优化模型(如ChatGLM3-6B) 3. 智能会议纪要:Whisper(ASR) + LangChain(流程编排) + 摘要模型(Qwen-14B-Chat) 需要验证这些组合的可行性,比如Dify是否支持集成外部模型,或者是否需要自行开发接口。另外,数据预处理和知识库构建也是关键步骤,比如投研机器人需要将研报向量化存储,方便检索。可能还需要定期更新知识库,自动化流程的处理。 可能遇到的问题包括模型微调需要专业知识,硬件资源不足导致延迟高,以及多模型协同工作的复杂性。需要给出解决方案,比如使用Hugging Face的Pipeline简化模型调用,或者采用量化模型降低资源消耗。 最后,确保推荐的工具和模型都有详细的部署文档和社区支持,方便用户实际操作。比如,Dify的文档是否详细,ChatGLM3是否有部署教程等。</think>以下针对本地化部署大模型在三个场景下的解决方案,结合平台选择、模型推荐及实施步骤进行结构化说明: --- ### **一、投研机器人(本地研报推送)** #### **核心需求** - **文档解析与检索**:处理PDF/Word研报,实时更新本地知识库 - **金融领域适配性**:理解专业术语(如PE、ROE)和市场逻辑 - **推送精准性**:结合当日行情匹配关联研报 #### **推荐方案** 1. **平台选择** - **Dify**:支持本地知识库管理、RAG检索增强,可配置定时任务触发推送流程 - **LangChain + ChromaDB**:灵活构建文档向量数据库,适合复杂检索逻辑 2. **模型推荐** - **基础模型**:Qwen-7B-Chat-Fin(阿里金融微调版)、BloombergGPT(需申请) - **微调方案**:使用LoRA在本地研报数据上微调ChatGLM3-6B 3. **部署步骤** ```bash # 示例:Dify本地部署流程 git clone https://github.com/langgenius/dify docker-compose -f docker/docker-compose.yaml up -d ``` - 上传研报到Dify知识库,配置自动化工作流: `行情数据API → 触发检索 → 生成摘要 → 邮件/企微推送` 4. **注意事项** - 研报解析需预处理(OCR提取表格、正则匹配章节) - 检索策略优化:混合关键词(如“半导体 Q2营收”)+ 向量相似度 --- ### **二、智能客服** #### **核心需求** - **多轮对话管理**:处理打断、上下文继承 - **意图识别**:分类咨询、投诉、业务办理等场景 - **企业知识库整合**:实时调用产品文档、政策条款 #### **推荐方案** 1. **平台选择** - **Dify**:内置对话状态跟踪,支持预设回复模板 - **FastChat**:轻量级部署,适合定制化对话逻辑 2. **模型推荐** - **通用模型**:ChatGLM3-6B(中文对话优化)、Baichuan2-13B-Chat - **垂直优化**:在客服历史对话数据上微调Qwen-1.8B-Int4(低资源消耗) 3. **部署步骤** ```python # FastChat启动示例 python3 -m fastchat.serve.cli --model-path /path/to/chatglm3-6b --device cuda ``` - 集成流程: `用户输入 → 意图分类(BERT) → 知识库检索 → 大模型生成回复` 4. **注意事项** - 设置敏感词过滤和兜底话术(如“正在转接人工”) - 压力测试:模拟高并发请求,优化批量推理(vLLM加速) --- ### **三、智能会议纪要** #### **核心需求** - **语音转写**:高精度中文ASR,支持多人区分 - **信息结构化**:提取决议、待办事项、责任人 - **摘要生成**:按部门/优先级分层输出 #### **推荐方案** 1. **工具链搭建** - **语音转写**:Whisper-large-v3(中英混合)、FunASR(针对会议场景优化) - **文本处理**:LangChain编排流水线,集成摘要模型 2. **模型推荐** - **摘要模型**:Qwen-14B-Chat(长文本处理)、mT5-base-zh(快速摘要) - **信息抽取**:UIE(Universal Information Extraction) 3. **部署步骤** ```python # 使用Whisper转写示例 from transformers import pipeline pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3") text = pipe("meeting.mp4")["text"] ``` - 处理流水线设计: `音频分轨 → 说话人识别 → 转写文本 → UIE抽取关键信息 → Qwen生成纪要` 4. **注意事项** - 硬件优化:使用NVIDIA TensorRT加速Whisper推理 - 隐私保护:音频处理全程离线,存储加密 --- ### **四、通用实施建议** 1. **硬件选型** - 轻量级场景:RTX 4090(24GB显存)运行7B模型 - 高负载场景:A100 80GB集群部署70B模型 2. **安全合规** - 网络隔离:部署在内网Kubernetes集群 - 审计日志:记录所有模型输入输出 3. **持续优化** - 监控GPU利用率,采用模型量化(GGUF/NF4格式) - 定期更新知识库,加入用户反馈数据微调模型 --- **按此方案,企业可在完全本地化环境下实现:投研推送时效性<5分钟、客服首响应<2秒、会议纪要生成<10分钟(1小时音频)**
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曼城周杰伦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值