一、实验目的及要求
- 掌握用MATLAB计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值结果进行初步分析。
- 掌握用MATLAB作线性最小二乘的方法。
通过实例学习如何用插值方法与拟合方法解决实际问题,注意二者的联系和区别。二、实验内容
7.1插值与拟合
Lagrange插值:对给定n个插值节点x1,x2,…,xn及对应函数值y1,y2,…,yn,利用(n-1)次lagrange插值多项式公式,求得插值区间任意x的函数值y
分段线型插值:所谓分段线型插值就是通过插值点用折线段连接起来逼近原曲线,放大后查看发现曲线并不完全过所有点。
Hermite插值:如果要求插值函数不仅在节点处与函数同值,而且要求它与函数有相同的一阶、二阶甚至高阶导数值,这就是埃尔米特插值问题。
三次样条插值:所谓样条( Spline)本来是工程设计中使用的一种绘图工具,它是富有弹性的细木条或细金属条。绘图员利用它把一些已知点连接成一条光滑曲线(称为样条曲线),并使连接点处有连续的曲率。
最小二乘拟合
利用polyfit进行多项式拟合,在Matlab中使用polyfit(x,y,2)命令对一组数据x和y进行2阶多项式拟合,会得到三个参数分别为各项系数
7.2积分与微分
积分
一Newton-Cotes系列数值求积公式
矩形求积公式
cumsum(X)
梯形求积公式
trapz(X,Y)
自适应simpson法求积
quad(‘F’,a,b,…)
自适应的cotes法求积公式
quad8(‘F’,a,b,…)
二Gauss求积公式
三Romberg求积公式
四Monte-Carlo方法
五符号积分
int
symsum
微分
数值微分与差分
diff(X,N,DIM)
符号微分与差分
diff(S,’v’,n)
梯度函数
[fx,fy]=gradient(F,HX,HY)
多元函数的导数
jacobian(f,v)
7.3求解线性方程组
一般分为两种
直接法:通过矩阵的变形、消去直接求解,主要用于低阶稠密矩阵
矩阵除法:x=a\b
线性方程组直接求解分析
LU分解: [l,u]=lu(a)
Cholesky分解:l=chol(a)
奇异值分解:[U,S,V] = SVD(X)
上三角变换:triu
对角变换:diag
下三角变换:tril
叠代法:利用某种极限过程去逐渐逼近方程组精确解,主要用于大型稀疏矩阵
Jacobi跌代法
gauss-seidel跌代法
SOR(逐次超松弛跌代法)
两步跌代法
线性方程组的解析解法
linsolve
solve
vpa
7.4求解非线性方程组
一:非线性方程的解法
二分法
不动点叠代法
Newton叠代(切线叠代)法
割线法
二:方程组解法
不动点跌代
Newton法
broyden法(秩1的拟newton法)
三:非线性方程(组)的解析解法
fsolve(‘fc’,x0)
7.5特征值问题
7.6常微分方程
一:欧拉方法
1简易欧拉法
2改进欧拉法
3 Runge-Kutta方法
ODE解函数:ode23, ode45, ode 113, ode15s, ode23s
参数选择函数:odeset, odeget
输出函数:odeplot, odephas2, odephas3, odeprint
ODE范例:orbt2ode, rigidobe, vdpode
1)二三阶R-K函数(低阶方法)
[T,Y]=ode23(‘F’,TSPAN,Y0,…)
F为求解微分方程,TSPAN为微分方程积分限,Y0初始条件
2)四五阶P-K函数(中阶方法)
[T,Y]=ode45(‘F’,TSPAN,Y0,…)
F为求解微分方程,TSPAN为微分方程积分限,Y0初始条件
4常微分方程的解析解
Dsolve
三、实验总结
Lagrange插值与牛顿插值都是属 n 次多项式插值,其插值条件也相同。