第七章MATLAB在计算方法中的应用

本文介绍了如何使用MATLAB进行Lagrange、分段线性、三次样条插值,探讨了最小二乘拟合方法,并详细讲解了线性方程组求解技巧,包括直接法、矩阵运算和迭代法。通过实例演示,对比插值与拟合的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、实验目的及要求

  1. 掌握用MATLAB计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值结果进行初步分析。
  2. 掌握用MATLAB作线性最小二乘的方法。

通过实例学习如何用插值方法与拟合方法解决实际问题,注意二者的联系和区别。二、实验内容

7.1插值与拟合

Lagrange插值:对给定n个插值节点x1,x2,…,xn及对应函数值y1,y2,…,yn,利用(n-1)次lagrange插值多项式公式,求得插值区间任意x的函数值y

分段线型插值:所谓分段线型插值就是通过插值点用折线段连接起来逼近原曲线,放大后查看发现曲线并不完全过所有点。

Hermite插值:如果要求插值函数不仅在节点处与函数同值,而且要求它与函数有相同的一阶、二阶甚至高阶导数值,这就是埃尔米特插值问题。

三次样条插值:所谓样条( Spline)本来是工程设计中使用的一种绘图工具,它是富有弹性的细木条或细金属条。绘图员利用它把一些已知点连接成一条光滑曲线(称为样条曲线),并使连接点处有连续的曲率。

最小二乘拟合

利用polyfit进行多项式拟合,在Matlab中使用polyfit(x,y,2)命令对一组数据x和y进行2阶多项式拟合,会得到三个参数分别为各项系数

7.2积分与微分

积分

一Newton-Cotes系列数值求积公式

矩形求积公式

cumsum(X)

梯形求积公式

trapz(X,Y)

自适应simpson法求积

quad(‘F’,a,b,…)

自适应的cotes法求积公式

quad8(‘F’,a,b,…)

二Gauss求积公式

三Romberg求积公式

四Monte-Carlo方法

五符号积分

int

symsum

微分

数值微分与差分

diff(X,N,DIM)

符号微分与差分

diff(S,’v’,n)

梯度函数

[fx,fy]=gradient(F,HX,HY)

多元函数的导数

jacobian(f,v)

7.3求解线性方程组

一般分为两种

直接法:通过矩阵的变形、消去直接求解,主要用于低阶稠密矩阵

矩阵除法:x=a\b

线性方程组直接求解分析

LU分解:  [l,u]=lu(a)

Cholesky分解:l=chol(a)

奇异值分解:[U,S,V] = SVD(X)

上三角变换:triu

对角变换:diag

下三角变换:tril

叠代法:利用某种极限过程去逐渐逼近方程组精确解,主要用于大型稀疏矩阵

Jacobi跌代法

gauss-seidel跌代法

SOR(逐次超松弛跌代法)

两步跌代法

线性方程组的解析解法

linsolve

solve

vpa

7.4求解非线性方程组

一:非线性方程的解法

二分法

不动点叠代法

Newton叠代(切线叠代)法

割线法

二:方程组解法

不动点跌代

Newton法

broyden法(秩1的拟newton法)

三:非线性方程(组)的解析解法

fsolve(‘fc’,x0)

7.5特征值问题

7.6常微分方程

一:欧拉方法

1简易欧拉法

2改进欧拉法

3 Runge-Kutta方法

ODE解函数:ode23, ode45, ode 113, ode15s, ode23s

参数选择函数:odeset, odeget

输出函数:odeplot, odephas2, odephas3, odeprint

ODE范例:orbt2ode, rigidobe, vdpode

1)二三阶R-K函数(低阶方法)

[T,Y]=ode23(‘F’,TSPAN,Y0,…)

F为求解微分方程,TSPAN为微分方程积分限,Y0初始条件

2)四五阶P-K函数(中阶方法)

[T,Y]=ode45(‘F’,TSPAN,Y0,…)

F为求解微分方程,TSPAN为微分方程积分限,Y0初始条件

4常微分方程的解析解

Dsolve

、实验总结

Lagrange插值与牛顿插值都是属 n 次多项式插值,其插值条件也相同。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值