原子操作 std::atomic

std::atomic 是 C++11 引入的一个模板类,用于实现原子操作。原子操作是不可分割的操作,它们在多线程环境下可以安全地执行,而无需额外的同步机制(如互斥锁)。std::atomic 提供了对基本数据类型的原子操作支持,如整数、布尔值、指针等。

以下是 std::atomic 的一些基本用法示例:

1. 引入头文件

首先,你需要包含 <atomic> 头文件:

#include <atomic>

2. 声明和使用 std::atomic 变量

你可以声明一个 std::atomic 类型的变量,例如一个原子整数:

std::atomic<int> atomicInt(0);

3. 原子操作

std::atomic 提供了一些成员函数来进行原子操作,例如 storeloadexchangefetch_addfetch_subcompare_exchange_weakcompare_exchange_strong 等。

读取和写入原子变量
int value = atomicInt.load(); // 原子读取
atomicInt.store(42);          // 原子写入
原子加减操作
int oldValue = atomicInt.fetch_add(1); // 原子地将 atomicInt 的值加 1,并返回旧值
int newValue = atomicInt.fetch_sub(1); // 原子地将 atomicInt 的值减 1,并返回旧值
原子比较和交换
int expected = 42;
if (atomicInt.compare_exchange_strong(expected, 100)) {
    // 如果 atomicInt 的值等于 expected(42),则将其设置为 100,并返回 true
} else {
    // 如果 atomicInt 的值不等于 expected(42),则 expected 被设置为 atomicInt 的当前值,并返回 false
}

4. 原子自增和自减

虽然 fetch_addfetch_sub 可以实现自增和自减,但 std::atomic 还提供了更简洁的操作符重载:

++atomicInt; // 原子自增
--atomicInt; // 原子自减

5. 原子布尔操作

对于布尔值,std::atomic 也提供了支持:

std::atomic<bool> atomicBool(false);

if (!atomicBool.load()) {
    atomicBool.store(true);
}

// 或者使用更简洁的操作符重载
atomicBool = true;
bool value = atomicBool.load();

6. 使用 std::atomic_flag

std::atomic_flag 是一个简单的原子布尔类型,它只支持两种操作:setclear,以及 test_and_set

std::atomic_flag flag = ATOMIC_FLAG_INIT;

// 设置标志位
flag.set();

// 清除标志位
flag.clear();

// 原子地测试并设置标志位,如果标志位之前为 false,则返回 false 并将其设置为 true;否则返回 true
bool wasSet = flag.test_and_set();

示例代码

以下是一个完整的示例代码,展示了 std::atomic 的基本用法:

#include <iostream>
#include <atomic>
#include <thread>
#include <vector>

std::atomic<int> counter(0);

void incrementCounter(int id, int iterations) {
    for (int i = 0; i < iterations; ++i) {
        ++counter;
    }
    std::cout << "Thread " << id << " incremented counter " << iterations << " times.\n";
}

int main() {
    const int numThreads = 10;
    const int iterationsPerThread = 1000;
    std::vector<std::thread> threads;

    for (int i = 0; i < numThreads; ++i) {
        threads.emplace_back(incrementCounter, i, iterationsPerThread);
    }

    for (auto& t : threads) {
        t.join();
    }

    std::cout << "Final counter value: " << counter.load() << "\n";

    return 0;
}

在这个示例中,多个线程并发地递增一个原子计数器,最终的结果将是正确的,因为 ++counter 是一个原子操作。

通过这些示例,你应该能够理解 std::atomic 的基本用法,并在多线程环境中使用它来确保数据的一致性。

### Anaconda 安装教程 #### 一、安装 Anaconda 并配置环境变量 为了确保 Anaconda 正常工作,在安装过程中需要注意勾选添加路径选项,这一步骤对于后续命令行工具的正常使用至关重要[^3]。 ```bash # 如果在安装时未选择添加路径,则可以通过手动设置环境变量来解决 export PATH="/path/to/anaconda/bin:$PATH" ``` #### 二、验证安装是否成功 完成安装后,可通过启动 Anaconda Navigator 或者在命令提示符中运行 `conda --version` 来确认安装情况。如果显示 Conda 的版本号则表示安装无误。 ```bash conda --version ``` ### 使用清华大学镜像加速软件包下载 #### 三、配置 Conda 使用清华大学镜像源 由于官方仓库可能速度较慢,建议修改默认的 Conda 源为清华大学开源软件镜像站提供的国内镜像地址,从而提高依赖项获取效率[^1]。 ```bash # 添加清华镜像作为优先级最高的渠道 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ # 显示完整的 URL 地址以便于调试 conda config --set show_channel_urls yes ``` #### 四、创建并激活 TensorFlow 所需虚拟环境 考虑到不同 Python 版本之间的兼容性差异,推荐专门为 TensorFlow 创建独立的工作空间,并指定合适的 Python 解释器版本[^2]。 ```bash # 基于特定Python版本建立新的Conda环境 conda create -n tensorflow python=3.6 anaconda # 切换至刚创建好的环境中去 conda activate tensorflow ``` #### 五、利用 Pip 和 Conda 结合方式高效部署 TensorFlow 及其他库 除了通过 Conda 管理基础设施外,还可以借助 PyPI 上丰富的第三方扩展资源进一步完善开发平台建设;同样地,这里也提倡采用本地化存储节点以加快网络传输速率[^4]。 ```bash # 运用Pip配合清华简易索引服务器快速加载目标模块 pip install tensorflow-gpu==2.x.y -i https://pypi.tuna.tsinghua.edu.cn/simple ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

code .

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值