vodka
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
29、学习预测聚类规则:原理、实验与展望
本文探讨了学习预测聚类规则的原理、实验与未来发展方向。重点介绍了基于紧凑性的规则搜索启发式方法、加权覆盖算法以及概率分类策略,并将其应用于多目标分类任务。通过与传统方法(如预测聚类树)在多个数据集上的对比实验,验证了该方法在准确性和聚类紧凑性方面的表现。同时,文章还展望了未来的研究方向,包括拓展应用范围至回归问题、优化启发式方法及改进权重选择机制。原创 2025-07-16 00:18:42 · 18 阅读 · 0 评论 -
28、学习预测聚类规则:数据挖掘新视角
本文介绍了预测聚类规则(PCRs)这一融合预测建模和聚类技术的数据挖掘新方法。PCRs结合了预测建模的预测能力和聚类的分组能力,适用于多目标预测任务,并通过基于CN2算法的系统进行规则学习。文章详细探讨了PCRs的定义、特点、学习方法及其在医疗诊断、金融风险评估等领域的应用前景。此外,还讨论了PCRs系统的优化策略和未来发展方向,为数据挖掘提供了新的思路和实践路径。原创 2025-07-15 10:56:48 · 16 阅读 · 0 评论 -
27、基于约束的多目标回归树归纳方法解析
本文解析了基于约束的多目标回归树(MORTs)归纳方法,探讨了大小和误差约束对树构建的影响,并介绍了如何通过剪枝算法优化模型性能。文章还比较了MORTs与单目标回归树(SORTs)在多个数据集上的表现,分析了其在准确性与可解释性之间的权衡。此外,还提出了未来研究方向,包括拓展应用场景、对比分析优化策略以及参数影响研究等。原创 2025-07-14 09:45:21 · 17 阅读 · 0 评论 -
26、利用虚拟模式自动修剪搜索空间及多目标回归树约束归纳
本文探讨了在数据挖掘中利用虚拟模式自动修剪搜索空间以及基于约束归纳构建多目标回归树的策略。通过虚拟模式,可以自动生成正负修剪条件,有效减少搜索空间,提升模式挖掘效率。同时,多目标回归树(MORTs)结合归纳数据库的理念,支持根据用户指定的大小和准确性约束构建高效、可解释的预测模型。实验表明,这些方法在多个数据集上具有良好的性能,并为未来的研究提供了方向。原创 2025-07-13 09:09:55 · 13 阅读 · 0 评论 -
25、利用虚拟模式自动修剪搜索空间
本文探讨了利用虚拟模式自动修剪搜索空间的方法,重点介绍了上下界运算符的定义与性质、虚拟模式的概念与计算,以及基于这些理论推导出的自动修剪条件。通过引入底部虚拟模式 ⊥ 和顶部虚拟模式 ⊤,可以更精确地处理原始约束,并在数据挖掘任务中高效地进行模式筛选和优化。原创 2025-07-12 13:26:00 · 12 阅读 · 0 评论 -
24、利用虚拟模式自动修剪搜索空间
本文介绍了一种基于虚拟模式自动推导修剪条件的方法,用于高效地缩小基于约束的模式挖掘中的搜索空间。通过引入底部和顶部虚拟模式的概念,并结合基于原语的框架,能够从任何基于原语的约束中自动获取正负修剪条件,从而显著提高挖掘效率。文章详细阐述了相关理论基础、推导步骤以及在实际场景中的应用与实验验证。原创 2025-07-11 14:02:46 · 12 阅读 · 0 评论 -
23、SQL 频繁模式挖掘算法优化与实践
本文深入探讨了基于 SQL 的频繁项集挖掘算法优化与实践,重点介绍了子查询优化方法和 FP-tree(频繁模式树)的构建与评估过程。文章详细描述了如何利用数据库技术实现高效的频繁模式挖掘,并通过实验比较不同算法在多个公共数据集和实际 Web 日志数据上的性能表现。此外,还展示了 FP-TDG 和 FP-TDG2 算法在高支持度阈值下的实际应用潜力,并提出了未来的研究方向。原创 2025-07-10 16:49:29 · 10 阅读 · 0 评论 -
22、多类相关模式挖掘与基于 SQL 的频繁模式挖掘算法解析
本文深入解析了多类相关模式挖掘的理论基础,包括对定理和引理的详细证明,并探讨了基于 SQL 的频繁模式挖掘算法(如 Apriori 和 FP - 增长算法)的实现与优化。同时分析了数据挖掘与数据库集成的发展方向及挑战,为高效的数据挖掘与知识发现提供了参考。原创 2025-07-09 13:39:49 · 11 阅读 · 0 评论 -
21、多类相关模式挖掘研究
本博文围绕多类相关模式挖掘展开研究,探讨了多种剪枝策略和评估方法的性能特点。通过将相关模式挖掘集成到基于Trie的Apriori算法中,并结合χ2统计量进行实验分析,验证了线性与指数剪枝方法在不同目标类数量下的效率差异。同时,研究还探讨了模式库的重用机制及其在回答不同类型相关性查询中的应用,为提高挖掘效率提供了可行方案。未来的研究方向包括扩展相关度量、提升测试可靠性、算法集成以及探索简洁的模式表示方式。原创 2025-07-08 09:57:11 · 9 阅读 · 0 评论 -
20、多类相关模式挖掘:从理论到应用
本文探讨了多类相关模式挖掘的理论基础及其应用,重点研究如何将最小相关性约束转化为最小频率约束,从而提高计算效率并实现频繁模式集的复用。文章分析了几种常用的相关性度量指标(如准确率、χ²统计量和信息增益),并在ROC空间中展示了它们的几何特性。通过理论推导和实验验证,本文提出的方法在大规模数据集上显著提升了挖掘效率,并为未来的研究方向提供了启示。原创 2025-07-07 16:51:08 · 13 阅读 · 0 评论 -
19、事务数据库与频繁项集的深入剖析
本文深入探讨了事务数据库中频繁项集的性质、关系及其多种浓缩表示方法。首先分析了最小自由非频繁项集与最小非频繁项集的等价性,以及自由频繁项集与闭频繁项集在数量上的关系。接着介绍了基于频率上下界的推导机制,并定义了非可推导频繁项集和k-自由频繁项集的概念及其数学性质。进一步结合数据库的普遍性和密度特性,讨论了k-自由项集与数据库结构之间的联系,并引入VC-维度作为衡量数据库复杂度的指标。通过多个真实数据库的实验验证,展示了不同浓缩表示方法在空间效率方面的优势。最后总结了相关理论成果,并展望了未来研究方向,包括复原创 2025-07-06 16:01:50 · 10 阅读 · 0 评论 -
18、事务数据库与频繁项集:概念、挖掘与压缩表示
本文深入探讨了事务数据库与频繁项集的基本概念、挖掘方法及其压缩表示形式。文章涵盖了项集、事务数据库的定义,以及支持度、频率等核心指标的计算方式。详细介绍了Apriori算法背后的原理——频率的反单调性,并分析了频繁项集挖掘的复杂度问题。此外,还讨论了多种压缩表示方式,如最大频繁项集、最小非频繁项集、频繁闭项集和自由频繁项集,比较了它们的优缺点及适用场景。最后给出了一个实际应用流程图和总结展望,为数据挖掘从业者提供了理论基础和实践指导。原创 2025-07-05 09:45:07 · 10 阅读 · 0 评论 -
17、数据挖掘中归纳数据库与频繁项集的深入探索
本文深入探讨了数据挖掘中归纳数据库与频繁项集的相关概念及其应用,重点介绍了数据预处理中的操作符(如离散化、模式发现、表转置和投影)以及SINDBAD系统的实际操作流程,包括基因表达数据的示例分析。文章还比较了SINDBAD与MS SQL Server 2005在数据挖掘方面的差异,并讨论了频繁项集的浓缩表示及其与数据模型复杂度和数据结构分析的关系。最后总结了SINDBAD系统的优势与限制,并展望了未来可能的研究方向和发展趋势。原创 2025-07-04 10:48:56 · 11 阅读 · 0 评论 -
16、探索关系模型中的归纳数据库与频繁查询挖掘
本文探讨了数据挖掘和数据库领域的两个重要研究方向:星型模式下频繁查询的挖掘以及关系模型中的归纳数据库构建。针对星型模式,介绍了F-模式与D-模式的频率定义、支持阈值处理方法,并讨论了规则筛选与未来的研究方向。在关系模型中,基于SINDBAD项目,详细阐述了SQL扩展语言的设计理念与核心操作符,包括`extend add as`和`feature select`等,展示了其在预处理、聚类、分类和特征选择等方面的应用能力。文章还通过操作示例、技术优势与应用场景分析,揭示了这些技术的灵活性与实用性,并展望了未来的原创 2025-07-03 14:24:00 · 10 阅读 · 0 评论 -
15、星型模式下频繁查询挖掘探索
本文探讨了在星型模式下进行频繁查询挖掘的方法和挑战。通过构建基于类的格结构,提出了计算频繁查询的两个主要步骤:频繁类的计算和频繁查询的生成。详细描述了算法1及其相关生成和剪枝策略,分析了支持度计算的难点,并基于实验结果讨论了优化的可能性。此外,还进一步探讨了用户按需查询的处理方式以及频率阈值的应用问题。整体上,该研究旨在提升频繁查询挖掘的效率和适用性,以满足不同场景下的需求。原创 2025-07-02 09:12:44 · 7 阅读 · 0 评论 -
14、星型模式下的频繁查询挖掘
本文围绕星型模式下的频繁查询挖掘展开,详细介绍了数据库的基本概念,包括属性全集、关系数据库方案、通用关系方案接口和星型模式的结构特点。通过引入弱实例的概念,将复杂的数据库查询问题转化为对单个表的操作,并定义了查询的支持度与频繁查询的标准。为了提高查询效率,文章进一步探讨了基于函数依赖的等价关系方案及其在支持度计算中的应用,利用等价类的性质和单调性优化查询挖掘过程。最终总结了整个方法体系的操作步骤,并展望了未来在复杂数据库环境中的应用前景。原创 2025-07-01 12:59:14 · 7 阅读 · 0 评论 -
13、快速容斥原理与星型模式下频繁查询挖掘
本文介绍了数据挖掘领域中的快速容斥(QIE)算法以及星型模式数据库下的频繁查询挖掘方法。QIE 算法通过优化传统容斥原理,显著降低了计算广义项集支持度的时间复杂度,达到 O(n2^n) 的效率。同时,在星型模式数据库中,结合函数依赖和弱实例语义,提出了分两步挖掘频繁投影-选择-连接查询的可行方案。文章还分析了不同算法在时间和空间上的性能差异,并讨论了实际应用中的内存使用、数据分布及未来研究方向。原创 2025-06-30 11:38:28 · 7 阅读 · 0 评论 -
12、快速容斥原理算法:高效计算项集支持度
本文介绍了快速容斥原理(Quick Inclusion-Exclusion,QIE)算法在数据挖掘中高效计算项集支持度的应用。探讨了容斥原理的多种应用场景及相关概念,如依赖值、非可导项集和支持配额。同时,详细分析了几种关键计算方法——暴力法、组合法和直接访问法的实现步骤与成本,并通过对比总结了它们的优缺点。文章还拓展了QIE算法的应用场景,提出了实际应用中的优化策略,如并行计算、缓存机制和剪枝策略,为提升数据挖掘效率提供了理论支持和技术指导。原创 2025-06-29 14:45:16 · 12 阅读 · 0 评论 -
11、实验数据库与快速容斥算法:数据挖掘新方法
本文介绍了一种全新的实验研究方法——实验数据库(ExpDB),以及快速容斥算法(QIE)在数据挖掘中的应用。ExpDB通过记录详细的实验日志,解决了传统实验中数据复用性、结果可重复性和泛化性的问题,并支持对多个参数和算法的深度分析。同时,文章探讨了容斥原理及其在计算包含否定项的项集支持度中的多种用途,并提出了高效的QIE算法。这些方法为数据挖掘带来了更高的效率和更深入的分析能力,但也存在一些需要进一步研究的开放问题,如D空间格式、数据集生成器和归纳查询语言的设计等。原创 2025-06-28 12:45:38 · 13 阅读 · 0 评论 -
10、实验数据库:实验研究的新方法
本文介绍了一种基于实验数据库的新方法,以解决传统机器学习实验研究中存在的可推广性不明确和不可复用等问题。通过创建包含大量随机实验结果的数据库,研究人员可以使用查询语言灵活地挖掘算法行为模式,深入分析参数和数据集属性对性能的影响。实验数据库方法不仅提高了实验结果的可推广性和研究效率,还为算法优化提供了有力支持。原创 2025-06-27 12:14:04 · 15 阅读 · 0 评论 -
9、布尔数据中容错模式的基于约束挖掘
本文探讨了在布尔数据中进行容错模式的基于约束挖掘,重点分析了传统形式概念挖掘在处理噪声数据时的局限性。通过合成数据集r2和真实医疗数据集的实验,比较了FBS、CBS和DRBS三种容错模式类的性能。研究发现,容错模式挖掘能够有效减少模式集合的大小,提高模式相关性,特别是在DRBS模式类中表现最佳。此外,文章还讨论了不同模式类的选择策略、约束的作用以及未来改进方向,为实际应用中如何权衡计算效率和模式质量提供了指导。原创 2025-06-26 14:44:24 · 7 阅读 · 0 评论 -
8、基于约束的布尔数据容错模式挖掘
本文介绍了在布尔数据中进行容错模式挖掘的不同方法,包括形式概念(FC)、密集相关双集(DRBS)、一致双集(CBS)和基于自由集的双集(FBS)。通过比较它们在容错性、相关性、易解释性以及计算效率方面的优缺点,并结合合成数据与现实世界数据的实验结果,分析了各类方法的适用场景。此外,文章还展望了未来的研究方向,如优化算法效率、提升模式相关性及多模式融合策略。原创 2025-06-25 15:11:39 · 7 阅读 · 0 评论 -
7、频繁项集挖掘的空间复杂度、实验及流数据应用
本文探讨了频繁项集挖掘中的空间复杂度问题,并通过实验验证了不同算法在处理大规模、稀疏及流数据时的性能表现。文章证明了在线频繁项集挖掘的空间复杂性下限,提出了适用于流数据的在线挖掘算法,并介绍了基于约束的容错模式挖掘方法。此外,还讨论了算法优化和混合算法的实现思路,为未来研究方向提供了理论支持和实践建议。原创 2025-06-24 09:18:50 · 8 阅读 · 0 评论 -
6、内存感知的频繁 k-项集挖掘
本文提出了一种基于冰山查询问题(IQ)的内存感知频繁 k-项集挖掘方法。通过将频繁项集挖掘(FIM)问题转化为 IQ 问题,并利用高效的 KSP 算法,该方法能够在大规模数据集上以有限的内存消耗和较少的数据遍历次数实现准确的频繁模式发现。特别适用于大数据、高维场景下传统算法难以应对的内存瓶颈问题。原创 2025-06-23 10:48:37 · 14 阅读 · 0 评论 -
5、数据库与数据流挖掘:技术进展与创新算法
本文探讨了数据库与数据流挖掘的技术进展,重点介绍了频繁 k-项集挖掘问题及其创新解决方案。文章回顾了归纳数据库的发展现状,并分析了不同方法的整合需求和互操作性实现。此外,提出了将频繁项集问题转化为冰山查询问题的新算法,有效降低了内存消耗并提升了处理大规模稀疏数据的能力。最后,展望了未来的研究方向及在实时数据流中的应用潜力。原创 2025-06-22 09:49:13 · 14 阅读 · 0 评论 -
4、数据库与数据流挖掘:查询语言与规则的应用
本文探讨了数据库与数据流挖掘中查询语言和规则的应用,重点分析了传统数据库管理系统在数据挖掘中的局限性,并提出了基于SQL扩展的中间道路方法。通过ATLaS系统和Stream Mill系统的案例,展示了如何利用用户定义聚合(UDA)和表达性流语言(ESL)来高效实现数据挖掘任务。文章还展望了归纳式数据流管理系统(DSMS)的发展方向及其在现实场景中的应用潜力。原创 2025-06-21 11:51:29 · 11 阅读 · 0 评论 -
3、归纳数据库中的数据挖掘探索
本文探讨了归纳数据库中数据挖掘的多个关键方向,包括条件独立性与关联规则、模型与模式挖掘、特征构建以及模式作为特征的应用。文章分析了每个方向的方法、优势和挑战,并提出了未来研究的重点领域,如模型与模式挖掘、模型的模型以及提升代数等。通过系统性研究和探索,目标是建立完整的归纳数据库数据挖掘理论体系,为复杂数据分析提供更强大的支持。原创 2025-06-20 14:31:51 · 8 阅读 · 0 评论 -
2、数据挖掘中的模型与操作:频繁项集与贝叶斯网络的探索
本文探讨了数据挖掘中频繁项集和贝叶斯网络的应用及其在关系代数运算符下的提升情况。分析了投影、笛卡尔积、等值连接和集合操作对两种工具的影响,并讨论了模型与模式之间的相互作用,包括局部模式到全局模型的转化以及全局模型如何辅助发现局部模式。最后总结了主要结论并提出了未来的研究方向,为数据挖掘领域的理论和实践提供了有价值的参考。原创 2025-06-19 14:32:55 · 8 阅读 · 0 评论 -
1、归纳数据库中的数据挖掘:探索与挑战
本文探讨了归纳数据库中数据挖掘的关键问题,重点分析如何将数据库技术与知识发现过程结合。文章围绕关系代数的提升、已有模型对新模型挖掘的帮助以及对模型和模式的进一步挖掘展开研究。通过讨论频繁项集和贝叶斯网络的具体操作与应用场景,揭示了归纳数据库在探索数据潜在规律中的潜力。此外,文章还总结了未来需要解决的研究问题,为归纳数据库技术的发展提供了方向。原创 2025-06-18 16:45:41 · 11 阅读 · 0 评论