随身带U盘
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
60、多Sink无线传感器网络中的可靠数据传输
本文探讨了在多Sink无线传感器网络中实现可靠数据传输的方法。通过引入备用路径路由策略、CASS汇聚节点选择算法以及可调通信范围机制,有效应对网络中的能量瓶颈和不可靠节点问题,从而延长网络寿命并减少消息丢失。文章详细介绍了网络模型、能量与路径管理机制、可靠性策略以及实验结果,验证了所提方法在不同网络密度和不可靠节点比例下的有效性。最后,文章总结了方法优势,并展望了未来的研究方向和应用场景。原创 2025-08-30 09:12:57 · 23 阅读 · 0 评论 -
59、金属氧化物厚膜pH传感器与无线传感器网络可靠数据传输
本博文探讨了金属氧化物厚膜pH传感器在人体汗液pH测量中的应用及其性能优化,同时研究了无线传感器网络中可靠数据传输的解决方案。通过电化学阻抗谱(EIS)分析和测试等效汗液溶液,验证了厚膜pH传感器的电导、阻抗和电容特性与pH值和频率的相关性,并通过材料优化(RuO₂与TiO₂按80:20 wt.%混合)提升了传感器性能。在无线传感器网络方面,AP方法结合可调通信范围能够有效解决能量洞问题,延长网络寿命并降低消息丢失率。未来的研究方向包括柔性基板传感器的开发以及网络路由算法的优化。原创 2025-08-29 12:09:55 · 24 阅读 · 0 评论 -
58、无线传感器网络区域头选择与金属氧化物pH传感器研究
本博文研究了无线传感器网络中的EZHS区域头选择优化方案以及基于金属氧化物的厚膜pH传感器制备与性能分析。EZHS方案通过多因素综合考量和非概率聚类方法,在网络稳定性和寿命方面相较现有方案分别提升了21.38%和19.84%。金属氧化物pH传感器通过RuO₂与TiO₂不同比例混合实验,最终确定80:20 wt.%的组合具有最佳性能,可在汗液pH监测等领域广泛应用。研究为无线传感器网络优化和pH传感技术提供了新的思路和方法。原创 2025-08-28 12:30:46 · 25 阅读 · 0 评论 -
56、基于联合学习的连接车辆框架与WSN - IoT中的区域头选择方案
本文介绍了两种创新方案:基于联合学习的连接车辆框架和基于ELECTRE I算法的区域头选择方案(EZHS)。前者通过分布式模型训练和聚合,实现了医疗数据的高效、隐私保护分类;后者通过多因素决策优化区域头选择,显著提高了WSN-IoT网络的性能和寿命。两种方案分别在医疗数据处理和物联网网络优化中展现了广阔的应用前景。原创 2025-08-26 15:35:31 · 19 阅读 · 0 评论 -
55、基于皮肤电反应的心理压力识别与智能医疗框架研究
本文介绍了基于皮肤电反应(GSR)的心理压力识别方法,并提出了一种基于联邦学习的智能医疗框架。通过使用多种传感器收集生理数据,结合机器学习算法(如朴素贝叶斯、SVM、决策树和随机森林)进行分析,结果显示随机森林算法在心理压力识别中具有最佳性能。同时,基于VANET的联邦学习框架有效提升了数据隐私和安全性,为智能医疗提供了新的解决方案。原创 2025-08-25 12:05:36 · 16 阅读 · 0 评论 -
54、数字水印技术与心理压力识别研究
本博客主要探讨了数字水印技术和基于皮电反应(GSR)的心理压力识别方法。数字水印技术通过离散小波变换(DWT)、离散余弦变换(DCT)和奇异值分解(SVD)等方法实现水印的嵌入与提取,为图像版权保护和篡改检测提供了有效手段。心理压力识别则利用GSR传感器监测人体生理数据,并结合机器学习算法分析压力水平,为健康管理提供了新思路。研究还比较了不同算法在水印处理和压力识别中的性能,展望了这些技术在信息安全和医疗健康领域的应用前景。原创 2025-08-24 15:02:19 · 15 阅读 · 0 评论 -
52、体育活动识别与接触追踪应用接受度研究
本博客聚焦于四项田径运动(铅球、铁饼、链球和标枪投掷)的识别,通过图像增强、预处理和BRISK特征提取技术构建分类模型,使用随机森林、SVM、KNN等多种机器学习算法进行训练和测试,比较不同算法的性能表现。同时,研究还基于UTAUT模型分析了公众对接触追踪应用的接受度,探讨绩效期望、隐私考虑、努力期望等因素对使用意愿的影响。最终,博客总结了在体育活动识别和疫情防控技术推广中的关键启示和未来发展方向。原创 2025-08-22 14:50:59 · 20 阅读 · 0 评论 -
51、精神分裂症预测与体育活动识别研究
本博文围绕精神分裂症预测和体育活动识别两个研究领域展开。在精神分裂症预测方面,运用AHP、Fuzzy AHP和TOPSIS多标准决策方法分析疾病影响因素,发现幻觉是最主要因素,并成功识别出最可能患病的个体。在体育活动识别方面,通过构建数据集、应用BRISK特征检测、图像增强、PCA降维及多种机器学习算法,实现了对铁饼、铅球和标枪投掷等动作的高效分类,SVM算法准确率达到98.7%。研究为精神健康诊断和体育训练提供了有效的方法支持。原创 2025-08-21 11:51:57 · 19 阅读 · 0 评论 -
50、基于ECC的轻量级CPABE方案与精神分裂症预测方法研究
本博客介绍了两项研究成果:一是基于椭圆曲线密码学(ECC)的轻量级密文策略属性基加密(CPABE)方案,该方案支持多权威机构、动态属性、解密外包和动态属性撤销,具有更高的灵活性和安全性;二是利用模糊AHP和模糊TOPSIS等多准则决策方法对精神分裂症的影响因素进行评估和排序,为疾病预测和临床决策提供支持。两项研究分别在密码学与医学领域展示了创新性和实用性。原创 2025-08-20 13:05:42 · 21 阅读 · 0 评论 -
49、基于ECC的轻量级CPABE属性撤销方案
本文提出了一种基于椭圆曲线密码系统(ECC)的轻量级密文策略属性基加密(CPABE)方案,通过引入动态属性撤销机制和采用线性秘密共享结构(LSSS),实现了高效的细粒度访问控制。该方案减少了传统CPABE中双线性对运算带来的高计算开销,支持时间、地理位置和普通属性的灵活访问策略,适用于企业数据安全、医疗数据共享和物联网设备安全等场景。通过代理服务器动态更新属性和重新加密数据,有效防止了因属性过期而导致的数据泄露风险,为云环境下的数据隐私保护提供了高效、安全的解决方案。原创 2025-08-19 10:02:06 · 17 阅读 · 0 评论 -
48、可验证的带作弊者识别的秘密图像共享方案
本文介绍了一种可验证的带作弊者识别的秘密图像共享方案,旨在解决传统方案中可能存在的数据操纵问题。通过引入额外的验证层,该方案确保了秘密份额重建的完整性。方案利用单向哈希算法和混沌逻辑映射技术,结合独特的份额生成与分发机制,增强了安全性。同时,通过组合器验证、作弊者识别和最终验证阶段,有效识别并阻止了潜在的恶意参与者。实验结果表明,该方案在图像重建质量和抗攻击能力方面表现优异。原创 2025-08-18 11:14:38 · 21 阅读 · 0 评论 -
47、心脏病与心力衰竭预测及可验证秘密图像共享技术解析
本博文探讨了两个重要领域:心脏病与心力衰竭的预测以及可验证秘密图像共享技术。在心脏病预测部分,分析了使用 Bagging 和 Stacking 模型对心脏疾病进行预测的性能,其中 Bagging 模型表现更优。在秘密图像共享部分,提出了一种结合验证机制的方案,能够有效防止数据篡改和作弊行为,确保敏感领域中数据的安全传输与重建。原创 2025-08-17 09:19:52 · 25 阅读 · 0 评论 -
46、电力系统频率控制与心脏病预测的多领域探索
本博客探讨了电力系统频率控制与心脏病预测两个领域的研究成果。在电力系统方面,研究了基于差分进化(DE)的控制策略在单区域混合电力系统中的应用,重点解决风力发电功率波动和负载频率管理问题。在心脏病预测方面,使用人工神经网络(ANN)、Bagging集成和Stacking集成方法,对心脏病和心力衰竭进行预测分析,并评估了不同模型的性能。研究还讨论了面临的挑战及未来发展方向,包括数据质量、模型解释性和技术更新等问题。原创 2025-08-16 16:45:46 · 21 阅读 · 0 评论 -
45、基于金枪鱼优化算法的数据放置调度与单区域混合电力系统频率控制
本文介绍了基于金枪鱼优化算法的数据放置调度方法(TOA-DPS)和单区域混合电力系统的频率控制研究。TOA-DPS通过任务优先级排序和资源映射,有效提高了数据访问性能并降低了能源消耗。在电力系统方面,采用差分进化(DE)算法优化PID控制器参数,显著提升了频率控制的稳定性和系统响应能力。研究结果展示了两种方法在各自领域的应用优势与潜力,并对未来发展方向进行了展望。原创 2025-08-15 14:38:54 · 14 阅读 · 0 评论 -
44、基于金枪鱼优化算法的数据放置与调度策略解析
本文介绍了一种基于金枪鱼优化算法(TSO)的数据放置与调度策略,通过模拟金枪鱼的螺旋和抛物线觅食行为,实现高效的任务调度与优化。文章详细解析了TSO算法的原理与流程,并结合多接入边缘计算环境(MEC)探讨了任务调度的具体应用。实验结果表明,TOA-DPS策略在任务间通信和数据访问比率方面均优于现有基线方法,能够显著提升数据处理效率,减少通信开销,为数据调度领域提供了一种新颖且高效的解决方案。原创 2025-08-14 14:19:34 · 21 阅读 · 0 评论 -
43、智能算法在数据处理与边缘计算中的应用
本文探讨了两种智能算法在数据处理与边缘计算中的应用。CSEGA算法在特征选择方面展现出卓越性能,通过优化特征集,有效提高了模型的准确率、召回率和F分数,同时减少了模型复杂度。另一方面,金枪鱼优化算法(TOA-DPS)在边缘计算环境中解决了数据放置和调度的NP难问题,通过结合任务优先级和DVFS技术,提高了数据访问性能并降低了能耗。两种算法在各自领域表现出显著优势,未来有望在更多复杂场景中结合应用并进一步优化。原创 2025-08-13 11:58:21 · 19 阅读 · 0 评论 -
42、机器学习在肝脏疾病诊断与文本分类中的应用
本文探讨了机器学习在肝脏疾病诊断和文本分类中的应用。在肝脏疾病诊断方面,比较了KNN、决策树、随机森林和SVM等分类算法,随机森林表现出最高准确率和F1分数。在文本分类领域,提出了基于卡方交叉的改进遗传算法(CSEGA),在减少特征数量的同时提升了分类性能。文章还分析了两个领域的共性与差异,并展望了未来发展方向,包括多模态数据融合、个性化医疗、跨领域应用等。原创 2025-08-12 11:26:14 · 19 阅读 · 0 评论 -
41、利用机器学习算法从MRI预测肝脏疾病
本研究探讨了利用机器学习算法从MRI图像中预测肝脏疾病的方法。通过使用包含健康和不健康肝脏图像的数据集,结合数据预处理、HOG特征提取和多种分类算法,最终采用随机森林算法实现了高达91.67%的准确率,优于以往研究。文章展示了机器学习在肝脏疾病早期诊断中的潜力,并为未来相关研究和临床应用提供了参考。原创 2025-08-11 10:40:14 · 13 阅读 · 0 评论 -
40、基于粗糙集理论和机器学习的胸部疾病早期预测
本文探讨了结合粗糙集理论(RST)和支持向量机(SVM)进行胸部疾病早期预测的方法。通过RST对不精确和模糊的医疗数据进行属性约简和核提取,有效识别关键预测因素,并利用SVM进行心脏骤停分类和预测。研究使用真实ECG数据,取得了较高的训练和测试准确率,为胸部疾病的早期检测提供了可行的技术路径。原创 2025-08-10 11:40:04 · 19 阅读 · 0 评论 -
39、基于随机梯度下降和判别式微调的多类致病微生物分类
本文研究基于随机梯度下降与热重启(SGDR)和判别式微调(DFT)方法,结合ResNet50、DenseNet121、MobileNetV2和Inception-ResNet-v2等深度学习架构,对包含33种致病微生物的DIBaS数据集进行多类分类任务。通过优化模型训练过程,显著提高了分类准确率,其中Inception-ResNet-v2架构表现最佳。研究还分析了不同网络架构的优势、调优方法的原理以及模型评估指标的意义,并提出了在医疗诊断、食品安全检测和环境监测等领域的应用建议。原创 2025-08-09 09:16:12 · 19 阅读 · 0 评论 -
38、基于高效 CNN 的红肉分类方法
本文提出了一种基于卷积神经网络(CNN)的红肉新鲜度分类方法。通过设计轻量级模型 HarNet,将红肉分为新鲜、半新鲜和变质三类。研究利用智能手机采集图像,并结合图像预处理技术提高分类精度。实验结果表明,HarNet 在测试集上达到 80% 的准确率,优于 VGG16、VGG19、ResNet50 和 InceptionV3 等预训练模型,为红肉新鲜度检测提供了一种高效、低成本的解决方案。原创 2025-08-08 12:09:23 · 15 阅读 · 0 评论 -
37、高效的印刷泰米尔字符识别与红肉新鲜度分类方法
本博客介绍了两种基于深度学习的研究成果:印刷泰米尔字符识别和红肉新鲜度分类。在泰米尔字符识别方面,结合HOG特征提取、SVM分类和改进的DIGI-Net卷积神经网络架构,实现了高效的字符识别,并通过领域适应提升了模型性能。在红肉新鲜度分类方面,设计了新型卷积神经网络HarNet,实现了对红肉图像的高效无损分类。两种研究均结合实际应用场景,展示了深度学习技术在不同领域的强大潜力和广泛应用前景。原创 2025-08-07 10:14:34 · 15 阅读 · 0 评论 -
36、网络特征优化与泰米尔字符识别:技术创新与实践探索
本文探讨了网络特征优化中的Shell-Based Perturbation(SP)方法及其在主特征向量本地化上的应用,同时介绍了泰米尔字符识别技术及相关数据集的开发与验证。SP方法通过扰动网络结构,优化主特征向量分布,实验结果表明其性能优于现有的随机扰动方法。在泰米尔字符识别方面,提出Mepco泰米尔字符数据集,并结合HOG特征提取、SVM分类器和深度学习模型实现了高准确率识别。文章还分析了两种技术的应用前景、面临的挑战及未来发展方向。原创 2025-08-06 09:26:43 · 13 阅读 · 0 评论 -
35、客户细分与网络信息定位的聚类及扰动算法研究
本文探讨了数据分析领域的两个重要方向:客户细分与网络信息定位。在客户细分部分,采用了平均轮廓法、间隙统计法和肘部法则三种方法确定最佳聚类数量,并通过多维度可视化分析了不同客户群体的特征,为商场制定精准营销策略提供了依据。在网络信息定位部分,提出了一种基于k-shell分解的Shell-based Perturbation(SP)方法,通过扰动策略最大化网络邻接矩阵的逆参与比(IPR),从而提高信息定位的准确性和效率。文章还展望了未来在更复杂数据集和网络结构上的进一步研究方向。原创 2025-08-05 15:54:56 · 17 阅读 · 0 评论 -
34、基于聚类算法的客户细分分析
本文探讨了基于K-Means聚类算法的客户细分方法,重点分析了如何通过数据可视化和聚类优化技术,将客户划分为具有相似特征的群体,从而为企业制定有针对性的营销策略提供支持。文章涵盖了数据准备、聚类算法原理、最优聚类数量的确定方法(如肘部法、轮廓系数法和Gap统计量法)、以及通过主成分分析对聚类结果进行可视化展示。研究使用一个商场客户数据集作为案例,展示了如何利用客户年龄、年收入和消费得分等信息实现客户细分,并讨论了不同优化方法的适用场景及结果分析。原创 2025-08-04 11:00:18 · 21 阅读 · 0 评论 -
32、基于系统依赖图的自动代码克隆检测技术与农业机器人模拟设计
本博客主要介绍了基于系统依赖图(SDG)的自动代码克隆检测技术和农业机器人模拟设计。在代码克隆检测部分,详细分析了几种常见的检测技术,包括基于文本、标记、树、程序依赖图和度量的方法,并提出了一种基于SDG的代码克隆检测算法(CodeCloneSearch),通过DFS遍历和节点比较来识别克隆对。农业机器人部分描述了其结构设计、电路建模、功能实现及模拟过程,展示了机器人在灌溉、播种、收割等农业任务中的应用潜力。最后,博客展望了两种技术的未来发展,提出了在并发编程环境和农业智能化中的应用前景。原创 2025-08-02 13:13:10 · 19 阅读 · 0 评论 -
30、棉花生产系统中的杂草检测与智能医疗系统的创新应用
本文探讨了计算机视觉技术在棉花生产系统杂草检测中的创新应用,以及物联网(IoT)和人工智能(AI)在智能医疗系统中的融合。在农业领域,通过YOLOv7-X模型实现了高效精准的杂草识别,并在CottonWeedID15数据集上取得了优异的性能指标。在医疗领域,结合CSO-CLSTM模型和隔离森林(iForest)方法,提高了心脏病和糖尿病的检测准确性。研究为农业生产和医疗健康提供了智能化发展的新思路和实践方法。原创 2025-07-31 15:49:11 · 15 阅读 · 0 评论 -
29、智能农业:区块链与机器学习的融合应用及棉花杂草检测
本文探讨了区块链与机器学习在智能农业中的融合应用,重点介绍了区块链技术在农业交易中的透明度、安全性和信任建立能力,以及机器学习在作物质量评估和投标决策中的精准预测和高效评估能力。文章还介绍了BidBlock应用的操作流程及其在农业交易中的实际案例,以及基于YOLOv7-X模型的棉花杂草检测方法,展示了其在棉田杂草识别中的高精度表现。同时分析了技术优势、面临的挑战及未来发展趋势,为推动农业智能化、精准化发展提供了参考。原创 2025-07-30 10:06:43 · 19 阅读 · 0 评论 -
28、深度学习在时间序列数据预测与农业智能投标中的应用
本文探讨了深度学习在时间序列数据预测和农业智能投标中的应用。首先,对比了多种深度学习模型(包括Dense Model、Conv1D Model、LSTM Model和GRU Model)在比特币价格预测任务中的表现,并通过MAE、MSE、RMSE和MAPE等指标评估了模型性能。结果显示,RNN模型(LSTM和GRU)在预测任务中具有相对优势。此外,文章介绍了基于区块链和机器学习的农业智能投标平台BidBlock,旨在解决农民在合同农业中面临的信任和技术障碍。最后,文章展望了未来在模型优化和应用扩展方面的研究原创 2025-07-29 15:29:02 · 21 阅读 · 0 评论 -
27、机器学习在心脏病预测与比特币价格预测中的应用
本文探讨了机器学习技术在心脏病预测和比特币价格预测中的应用。心脏病预测采用结合期望最大化(EM)聚类和支持向量机(SVM)的框架,取得了较高的分类准确率。比特币价格预测则使用了密集神经网络、一维卷积模型、长短期记忆网络(LSTM)和门控循环单元(GRU)等多种深度学习模型,其中GRU模型表现最佳。文章还分析了时间序列预测的挑战与应对策略,并展望了机器学习在不同领域的未来发展。原创 2025-07-28 12:49:10 · 15 阅读 · 0 评论 -
26、推荐系统与心脏病预测模型研究
本文探讨了两种不同领域的模型研究:一是混合协同推荐系统,通过对比SVD、PMF、NMF和RecSVD++等方法,验证了提出的模型在推荐准确性及处理高稀疏数据方面的优势;二是基于混合聚类的快速支持向量机模型,用于心脏病预测,通过特征选择、异常值分析和PCA降维等步骤,提高了预测准确性和效率。实验结果表明,该心脏病预测模型在准确率、灵敏度、特异度和F1分数等指标上均优于现有模型,具有良好的实际应用前景。原创 2025-07-27 11:22:16 · 18 阅读 · 0 评论 -
25、计算机视觉与推荐系统技术融合:从板球裁判到商品推荐
本文探讨了计算机视觉技术在板球裁判辅助判罚中的应用,包括无球检测、超边缘检测和球跟踪技术,并介绍了混合协同推荐系统,结合奇异值分解(SVD)和余弦相似度提高推荐准确性。通过技术融合,为板球比赛的公正性和推荐系统的智能化提供了解决方案。原创 2025-07-26 11:34:24 · 24 阅读 · 0 评论 -
24、基于胸部X光图像的COVID - 19检测及板球LBW判罚自动化技术
本文探讨了基于胸部X光图像的COVID-19检测和板球LBW判罚自动化技术。在医学图像分析部分,通过整合多个数据集并应用KNN分类器,比较了LBP、HOG和FD特征的分类性能,结果显示FD特征在各项指标上表现最优。在板球领域,提出了基于计算机视觉和图像减法技术的LBW判罚自动化方法,并分析了其实现步骤与面临的挑战。研究展示了机器学习和图像处理技术在医疗诊断和体育判罚中的应用潜力,未来可进一步结合深度学习和多传感器融合技术提升性能。原创 2025-07-25 16:14:35 · 22 阅读 · 0 评论 -
23、机械与医疗图像领域的研究成果:齿轮优化与新冠检测图像分类
本博文探讨了机械与医疗图像领域的两项重要研究成果:一是直齿轮的多目标优化设计,通过对比组1与组2齿轮组的效率、温度变化及接触应力,得出组2齿轮在多数性能指标上更优,并给出不同应用场景下的选择建议;二是基于多种特征提取技术(HOG、LBP、FD)结合KNN分类算法的胸部X光图像分类方法,用于提升COVID-19检测的准确性,并分析了各特征提取技术的优缺点及适用场景。同时,博文展望了两个领域的未来发展趋势,包括智能化设计、材料创新、多模态医学图像分类与远程医疗等方向。原创 2025-07-24 11:08:03 · 14 阅读 · 0 评论 -
22、基于视觉的骑行者车道与头盔检测及直齿轮多目标设计分析
本文探讨了两个主要研究方向:一是基于视觉的骑行者车道与头盔检测系统,采用SIFT和随机森林算法实现了较高的检测准确率,并对比分析了现有系统的优势与改进空间;二是直齿轮的多目标设计优化,通过引入重量和赫兹应力最小化目标函数,结合粒子群优化(PSO)算法设计出轮廓修改直齿轮组,并通过CAD建模与实验验证了其性能。实验结果表明,优化后的齿轮组在效率、接触应力和抗磨损性能方面表现优异。研究为智能交通监控系统和高性能齿轮设计提供了重要的理论支持与实践方法。原创 2025-07-23 15:23:54 · 9 阅读 · 0 评论 -
21、基于视觉的自行车骑行道与头盔检测系统解析
本文介绍了一种基于视觉的自行车骑行道与头盔检测系统,旨在提升自行车骑行者的交通安全。系统分为两个检测模块:一个用于判断骑行者是否在专用骑行道上,另一个用于检测是否佩戴头盔。系统采用SIFT特征提取、K-Means聚类、PCA降维等技术进行特征处理,并通过多种机器学习算法进行分类分析,最终选择性能最优的随机森林算法作为核心模型。实验结果显示,自行车道检测测试准确率为85.44%,头盔检测测试准确率为87.83%。系统具备较高的实用价值,并在未来可进一步优化算法、扩充数据集、提升实时性及拓展功能。原创 2025-07-22 14:31:06 · 18 阅读 · 0 评论 -
20、机器学习在洪水预测与骑行检测中的应用
本文探讨了机器学习在洪水预测与骑行者检测中的应用。在洪水预测部分,使用贝叶斯定理和多种分类算法,比较了KNN、SVM、DT、RF、LR和NB的性能,发现逻辑回归(LR)具有最高的准确率。在骑行者检测方面,基于SIFT特征提取和机器学习分类算法,随机森林分类器在车道和头盔检测中表现最佳。文章还分析了两种应用的技术优势和未来发展方向,强调了机器学习在灾害管理和交通监控中的重要价值。原创 2025-07-21 15:25:36 · 18 阅读 · 0 评论 -
19、工业事故与洪水预测的机器学习应用
本文探讨了机器学习在工业事故季节性分析和洪水预测中的应用。研究利用深度学习模型DNN结合SMOTE技术实现了高准确率的工业事故预测,同时比较了多种机器学习算法在洪水预测中的表现,强调了数据质量和模型选择的重要性。文章还展望了未来多模态数据融合、深度学习和智能决策系统在相关领域的应用前景。原创 2025-07-20 15:53:42 · 19 阅读 · 0 评论 -
18、智能生活与工业安全:科技驱动的双重保障
本文探讨了科技在智能生活与工业安全领域的双重应用。首先,介绍了基于多种传感器的智能家居自动化与健康监测系统,涵盖医疗保健、厨房安全和水箱水位监测功能,通过Wi-Fi技术实现远程控制,为人们提供舒适、节能的生活环境。其次,研究提出了一种基于深度神经网络(DNN)并结合SMOTE技术的工业事故预测模型,有效解决了数据不平衡问题,提高了事故预测的准确性。通过特征选择、数据平衡和模型优化,该模型在性能指标上优于现有方法,为提升工业生产安全提供了技术支持。文章总结了研究的成果,并展望了未来在智能家居和工业安全领域的发原创 2025-07-19 16:08:48 · 14 阅读 · 0 评论 -
17、糖尿病预测与太阳能智能家庭系统研究
本文探讨了糖尿病预测和太阳能智能家庭系统的相关研究。在糖尿病预测方面,比较了随机森林、朴素贝叶斯和多层感知器三种机器学习算法在PIMA印度人数据集上的性能,分析了各算法在不同检测结果下的优势。未来研究可进一步细化糖尿病类型分类。在太阳能智能家庭系统方面,介绍了基于无线传感器网络的智能家居架构,包括安全、环境监测和智能能源管理功能,结合太阳能供电和MPPT技术,提高了能源效率和生活便捷性。文章总结了当前研究的成果,并展望了未来发展方向,为医疗健康和智能家居领域提供了有价值的参考。原创 2025-07-18 12:30:01 · 11 阅读 · 0 评论