水周期算法在继电器协调优化中的应用
在电力系统中,继电器协调优化是确保系统安全稳定运行的关键环节。本文将介绍水周期算法(WCA)在继电器协调优化中的应用,并与其他算法如灰狼优化算法(GWO)、GWO - PSO算法和内点算法进行对比分析。
1. 算法相关公式与参数
在算法中,有这样的公式:
[X_{sea} = sea\times(2.14)]
其中,(\mu) 是偏差率,也是靠近岸边搜索区域的持续时间(合适的 (\mu = 0.1)),并分配了随机数 (N{1, Nvar})。
2. 结果与讨论
解决继电器协调优化问题,要求算法能在快速且有限的时间内提供满足模型要求的解决方案。采用约束优化技术来解决这类问题,在该模型中,所有约束都是为了优化过流继电器的时间乘数设置(TMS)值,因为继电器的反应时间取决于 TMS 值。
以下是使用不同算法得到的 TMS 值结果:
|算法|PV 渗透水平|0.0%|0.20%|0.40%|0.60%|0.80%|0.100%|
| ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- |
|WCA|Case No. 1|0.65|0.65|0.65|0.65|0.65|0.65|
| |Case No. 2|0.45|0.45|0.45|0.45|0.45|0.45|
| |Case No. 3|0.25|0.25|0.25|0.25|0.25|0.25|
| |Case No. 4|0.05|0.05|0.05|0.05|0.05|0.05|
| |Case N