人工智能在光伏系统中的应用与发展
1. 引言
随着对清洁能源需求的不断增长,光伏系统作为一种重要的可再生能源解决方案,受到了广泛关注。人工智能(AI)技术在光伏系统中的应用,为提高光伏系统的性能、效率和可靠性提供了新的途径。本文将介绍几种常见的人工智能技术在光伏系统中的应用,包括极端学习机(ELM)、神经网络AI技术和元启发式AI技术。
2. 极端学习机(ELM)在光伏系统中的应用
- ELM原理 :在ELM中,权重和偏置是随机选择的,通过预测器可以得到最优解。它采用前馈和反向传播人工神经网络(ANN),提高了数据的收敛速度、泛化能力、调优效果和最佳拟合度。
- 应用案例
- 太阳辐射估计 :有研究将ELM用于估计全球太阳辐射。在测试阶段,与多元线性回归(MLR)和其他模型相比,ELM的平均误差和均方根误差更低。
- 频率稳定性改善 :提出了一种基于虚拟惯性的机器学习方法,用于提高光伏系统并入电网时的频率稳定性。机器学习控制器相比PI控制器具有自学习能力、解决频率稳定性问题的能力、更快的动态响应和自适应控制等优点。仿真研究表明,基于机器学习的控制器能将稳态误差降低27%,频率相对于标称频率的最大偏差限制在0.1Hz以内。
- 无线传感器网络能量管理 :一种结合强化学习(RL)和睡眠调度的算法应用于无线传感器光伏系统。该算法分两个阶段工作:首先在组中分配优先级运算符并完成节点形成;然后将