9、人工智能与热力学方法在太阳能转换中的应用

人工智能与热力学方法在太阳能转换中的应用

1. 人工智能在光伏系统中的应用

1.1 人工智能解决的光伏系统问题

人工智能在光伏系统中发挥着重要作用,可解决多种问题,以下是一些常见问题及对应使用的人工智能技术:
| 参考文献 | 人工智能技术 | 解决的问题 | 优点 |
| — | — | — | — |
| [5] | 集成学习 | 有机染料敏化太阳能电池的效率问题 | 出色的泛化能力和准确性 |
| [6] | 人工神经网络集成 | 231kW 并网光伏系统的预测 | 优于支持向量机和单一基础学习器方法 |
| [7] | 优化自适应残差集成模型 | 光伏系统发电预测 | 准确的短期预测、有效的调度和可靠的运行 |
| [9] | 深度学习(卷积神经网络、自动编码器、玻尔兹曼机) | 能源政策研究、光伏系统中深度学习技术的回顾 | 大数据分析和处理、最小化重建误差 |
| [10] | 机器学习 | 微逆变器光伏系统的比较电能产量性能 | 长期数据分析,微逆变器光伏系统年发电量无显著变化 |
| [11] | 强化学习 - 滑模控制 | 部分遮荫条件下光伏发电的长期分析预测 | 在最大功率点提取和控制方面优于模糊滑模控制 |
| [12] | 极限学习机 | 三相并网光伏系统的最大功率点跟踪 | 与回归方法相比,降低了平均误差和均方根误差 |
| [13] | 强化学习 | 全球太阳辐射的估计 | 控制器动态响应更快 |
| [16] | 半监督学习 | 并网光伏系统的频率稳定性改进 | 识别和纠正所有已学习和未学习的故障 |
| [17] | 深度强化学习 | 光伏系统的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值