深度学习在太阳能预测中的应用
1. 引言
全球正朝着可持续可再生能源(RES)迈进,这推动了对光伏(PV)板的需求。多年来,光伏板发电成本降低,能量转换效率提高,2017 年效率提升了 5%,这可能得益于季节能源的合理利用、高效设计等因素。
然而,光伏板的能量输出依赖于天气条件,如云层覆盖、太阳辐射强度、辐射持续时间和太阳辐射入射角,因此其输出不稳定。短期内(最多 5 小时),输电系统管理员关注光伏板的能量输出,以确保整个电网的平衡,因为发电过多或过少常导致额外的罚款。而电力经销商则关注长期预测,通常是提前一天的预测,因为大多数电力在日前市场交易。所以,准确预测太阳能光伏板的能量输出波动对这些任务的收益至关重要。
随着对光伏电力预测解决方案的兴趣增加,借助人工智能(AI)的预测方法逐渐比传统的时间序列预测模型更受欢迎。尽管机器学习(ML)技术并不新鲜,但计算能力的增强和高质量数据的更易获取,使其在预测中发挥了重要作用,未来有望成为该领域的关键技术。
主要目标是对太阳能光伏板能量输出的不同估计策略进行基准测试。为此,可以利用人工智能和时间序列程序来深入了解各种气候条件与光伏系统能量输出之间的关系。有四种机器学习程序可作为现有设施中光伏系统信息的传统时间序列技术的基准,同时还需要研究重要的构建程序,以提高光伏系统的整体预测准确性。
作者 | 错误率(ER)(%) |
---|---|
Energy & Metro System | 19 |